17.在等差數(shù)列{an}中,a1,a4031是函數(shù)f(x)=$\frac{1}{3}{x^3}$-4x2+6x-1的極值點,則log2a2016的值是( 。
A.5B.4C.3D.2

分析 利用導(dǎo)數(shù)即可得出函數(shù)的極值點,再利用等差數(shù)列的性質(zhì)及其對數(shù)的運算法則即可得出.

解答 解:函數(shù)f(x)=$\frac{1}{3}{x^3}$-4x2+6x-1可得f′(x)=x2-8x+6,
∵a1、a4031是函數(shù)f(x)=$\frac{1}{3}$x3-4x2+6x-1的極值點,
∴a1、a4031是方程x2-8x+6=0的兩實數(shù)根,則a1+a4031=8.而{an}為等差數(shù)列,
∴a1+a4031=2a2016,即a2016=4,
從而log2a2016=log24=2.
故選:D.

點評 本題考查函數(shù)的導(dǎo)數(shù)研究函數(shù)的極值、等差數(shù)列的性質(zhì)及其對數(shù)的運算法則,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若f(x)=cos(2x+φ)+b,對任意實數(shù)x都有f(x)=f($\frac{π}{3}$-x),f($\frac{2π}{3}$)=-1,則實數(shù)b的值為( 。
A.-2或0B.0或1C.±1D.±2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,△ABC內(nèi)接于⊙O,AB為其直徑,CH⊥AB于H延長后交⊙O于D,連接DB并延長交過C點的直線于P,且CB平分∠DCP.
(1)求證:PC是⊙O的切線;
(2)若AC=4,BC=3,求$\frac{PC}{PB}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.平面A1B1C1∥平面ABC,A1A⊥平面ABC,A1A∥B1B∥C1C,AB=BC=AC=AA1=4,求BC1與平面ABB1A1所成角的大。ㄒ笥脦缀魏拖蛄績煞N方法計算,并有規(guī)范的計算過程)
幾何方法:arcsin$\frac{\sqrt{6}}{4}$
向量方法:arcsin$\frac{\sqrt{6}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=2ex+2ax-a2,a∈R.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(Ⅱ)若x≥0時,f(x)≥x2-3恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在菱形ABCD中,A=60°,AB=$\sqrt{3}$,將△ABD折起到△PBD的位置,若三棱錐P-BCD的外接球的體積為$\frac{7\sqrt{7}π}{6}$,則二面角P-BD-C的正弦值為( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{7}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.語文成績服從正態(tài)分布N(100,17.52),數(shù)學(xué)成績的頻率分布直方圖如圖:
(1)如果成績大于135的為特別優(yōu)秀,這500名學(xué)生中本次考試語文、數(shù)學(xué)特別優(yōu)秀的大約各多少人?
(2)如果語文和數(shù)學(xué)兩科都特別優(yōu)秀的共有6人,從(1)中的這些同學(xué)中隨機(jī)抽取3人,設(shè)三人中兩科都特別優(yōu)秀的有x人,求x的分布列和數(shù)學(xué)期望.
(3)根據(jù)以上數(shù)據(jù),是否有99%的把握認(rèn)為語文特別優(yōu)秀的同學(xué),數(shù)學(xué)也特別優(yōu)秀.
①若x~N(μ,σ2),則P(μ-σ<x≤μ+σ)=0.68,P(μ-2σ<x≤μ+2σ)=0.96.
②k2=$\frac{n(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)}$;

P(k2≥k00.500.400.0100.0050.001
k00.4550.7086.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知集合M={x|x2+3x=0},N={x|x2+2x-3=0},求M∩N.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知數(shù)列{an}是首項為1,公差不為0的等差數(shù)列,且a1,a2,a4成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,Sn是數(shù)列{bn}的前n項和,求證:Sn<1.

查看答案和解析>>

同步練習(xí)冊答案