9.語(yǔ)文成績(jī)服從正態(tài)分布N(100,17.52),數(shù)學(xué)成績(jī)的頻率分布直方圖如圖:
(1)如果成績(jī)大于135的為特別優(yōu)秀,這500名學(xué)生中本次考試語(yǔ)文、數(shù)學(xué)特別優(yōu)秀的大約各多少人?
(2)如果語(yǔ)文和數(shù)學(xué)兩科都特別優(yōu)秀的共有6人,從(1)中的這些同學(xué)中隨機(jī)抽取3人,設(shè)三人中兩科都特別優(yōu)秀的有x人,求x的分布列和數(shù)學(xué)期望.
(3)根據(jù)以上數(shù)據(jù),是否有99%的把握認(rèn)為語(yǔ)文特別優(yōu)秀的同學(xué),數(shù)學(xué)也特別優(yōu)秀.
①若x~N(μ,σ2),則P(μ-σ<x≤μ+σ)=0.68,P(μ-2σ<x≤μ+2σ)=0.96.
②k2=$\frac{n(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)}$;

P(k2≥k00.500.400.0100.0050.001
k00.4550.7086.6357.87910.828

分析 (1)先求出語(yǔ)文成績(jī)特別優(yōu)秀的概率和數(shù)學(xué)成績(jī)特別優(yōu)秀的概率,由此能求出語(yǔ)文和數(shù)學(xué)兩科都特別優(yōu)秀的人的個(gè)數(shù).
(2)由題意X的所有可能取值為0,1,2,3,分別求出相應(yīng)的概率,由此能求出X的分布列和E(X).
(3)列出2×2列聯(lián)表,求出k2,與臨界值比較,即可得出結(jié)論.

解答 解:(1)∵語(yǔ)文成績(jī)服從正態(tài)分布N(100,17.52),
∴語(yǔ)文成績(jī)特別優(yōu)秀的概率為p1=P(X≥135)=(1-0.96)×$\frac{1}{2}$=0.02,
數(shù)學(xué)成績(jī)特別優(yōu)秀的概率為p2=0.0016×20×$\frac{3}{4}$=0.024,
∴語(yǔ)文特別優(yōu)秀的同學(xué)有500×0.02=10人,
數(shù)學(xué)特別優(yōu)秀的同學(xué)有500×0.024=12人.
(2)語(yǔ)文數(shù)學(xué)兩科都優(yōu)秀的有6人,單科優(yōu)秀的有10人,
X的所有可能取值為0,1,2,3,
P(X=0)=$\frac{{C}_{10}^{3}}{{C}_{16}^{3}}$=$\frac{3}{14}$,
P(X=1)=$\frac{{C}_{10}^{2}{C}_{6}^{1}}{{C}_{16}^{3}}$=$\frac{27}{56}$,
P(X=2)=$\frac{{C}_{10}^{1}{C}_{6}^{2}}{{C}_{16}^{3}}$=$\frac{15}{56}$,
P(X=3)=$\frac{{C}_{6}^{3}}{{C}_{16}^{3}}$=$\frac{1}{28}$,
∴X的分布列為:

x0123
P$\frac{3}{14}$$\frac{27}{56}$$\frac{15}{56}$$\frac{1}{28}$
E(X)=0×$\frac{3}{14}$+1×$\frac{27}{56}$+2×$\frac{15}{56}$+3×$\frac{1}{28}$=$\frac{9}{8}$.
(3)2×2列聯(lián)表:
語(yǔ)文特別優(yōu)秀語(yǔ)文不特別優(yōu)秀合計(jì)
數(shù)學(xué)特別優(yōu)秀6612
數(shù)學(xué)不特別優(yōu)秀4484488
合計(jì)10490500
∴k2=$\frac{500×(6×484-4×6)^{2}}{10×490×12×488}$≈144.5>6.635
∴有99%的把握認(rèn)為語(yǔ)文特別優(yōu)秀的同學(xué),數(shù)學(xué)也特別優(yōu)秀.

點(diǎn)評(píng) 本題考查正態(tài)分布的應(yīng)用,考查離散型隨機(jī)變量的分布列和數(shù)學(xué)期望的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意排列組合知識(shí)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.設(shè)向量$\overrightarrow a,\overrightarrow b$均為單位向量,且|$\overrightarrow a+2\overrightarrow b$|=$\sqrt{3}$,則$\overrightarrow a$與$\overrightarrow b$的夾角為( 。
A.$\frac{π}{3}$B.$\frac{π}{2}$C.$\frac{3π}{4}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=2sinθ.
(1)求曲線C的直角坐標(biāo)方程;
(2)在曲線C上求一點(diǎn)D,使它到直線$l:\left\{\begin{array}{l}x=\sqrt{3}t+\sqrt{3}\\ y=-3t+2\end{array}\right.$(t為參數(shù))的距離最短,并求出最短距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.在等差數(shù)列{an}中,a1,a4031是函數(shù)f(x)=$\frac{1}{3}{x^3}$-4x2+6x-1的極值點(diǎn),則log2a2016的值是( 。
A.5B.4C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,在四棱錐P-ABCD中,底面ABCD是菱形,∠ABC=60°,PA⊥平面ABCD,E,F(xiàn)分別是BC,PC的中點(diǎn),H是PD上的動(dòng)點(diǎn),EH與平面PAD所成的角為θ.
(1)求證:平面AEF⊥平面PAD;
(2)求當(dāng)θ取最大值為$\frac{π}{4}$時(shí),二面角E-AF-C的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.將點(diǎn)的極坐標(biāo)(π,-2π)化為直角坐標(biāo)為( 。
A.(π,0)B.(π,2π)C.(-π,0)D.(-2π,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖,在圓內(nèi)接梯形ABCD中,AB∥CD.過(guò)點(diǎn)A作圓的切線與CB的延長(zhǎng)線交于點(diǎn)E,若AB=AD=3,BE=2,
(1)求證:梯形ABCD為等腰梯形;
(2)求弦BD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知二次函數(shù)f(x)滿足關(guān)系式f(-2+x)=f(-2-x),f(x)的圖象被x軸截得的線段長(zhǎng)為4,且方程f(x)=x有唯一的解,求f(x)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.甲、乙、丙、丁和戊5 名學(xué)生進(jìn)行勞動(dòng)技術(shù)比賽,決出第一名到第5 名的名次.若甲乙都沒(méi)有得到冠軍,并且乙不是最差的,5 個(gè)人的名次排名可能有多少種不同的情況?

查看答案和解析>>

同步練習(xí)冊(cè)答案