空間給定不共面的A、B、C、D四個點,其中任意兩點的距離都不相同,考慮具有如下性質(zhì)的平面α:A、B、C、D中有三個點到α的距離相同,另外一個點到α的距離是前三個點到α的距離的2倍,這樣的平面的個數(shù)是( 。
A、15B、23C、26D、32
考點:平面與平面之間的位置關(guān)系
專題:空間位置關(guān)系與距離
分析:按照四個點的位置不同分類討論.
解答: 解:首先取3個點相等,不相等的那個點有4種取法.
然后分3個點到平面α的距離相等,有以下2種可能性:
①全同側(cè),這樣的平面有2個;
②不同側(cè),必然2個點在一側(cè),另1個點在一側(cè),1個點的取法有3種,并且平面過三角形兩個點邊上的中位線.考慮不相等的點與單側(cè)點是否同側(cè)有兩種可能,每種情況下都唯一確定一個平面,有6個.
所以共有8個.
綜上滿足條件的這樣的平面共有4×8=32個.
故選D.
點評:本題考查了空間點線面的關(guān)系,屬于難題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

兩個袋中各裝有編號為1,2,3,4,5的5個小球,分別從每個袋中摸出一個小球,所得兩球編號數(shù)之和小于5的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡:sin2α+sin2β+sin2αsin2β+cos2αcos2β=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+bx+c滿足f(x+1)=x2+x+1,則b+c=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,PA⊥平面ABCD,ABCD是矩形,PA=AB=
2
,AD=
3
,點F是PB的中點,點E是邊BC上的動點.
(Ⅰ)求三棱錐E-PAD的體積;
(Ⅱ)當(dāng)點E為BC的中點時,試判斷EF與平面PAC的位置關(guān)系,并說明理由;
(Ⅲ)證明:無論點E在邊BC的何處,都有PE⊥AF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算:
(1)16-0.75
(2)0.064 -
1
3

(3)(
1
4
 -
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2+|x-a|,g(x)=
a
x

(1)當(dāng)a=0時,解關(guān)于x的不等式f(x)>2;
(2)求函數(shù)f(x)的最小值;
(3)若?t∈(0,2),?x∈R使f(x)=g(t)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題正確的個數(shù)是( 。
①梯形的四個頂點在同一平面內(nèi)        
②三條平行直線必共面
③有三個公共點的兩個平面必重合      
④每兩條相交的且交點各不相同的四條直線一定共面.
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2cosx(
3
sinx-cosx)+1(x∈R)
(1)求函數(shù)f(x)的最小正周期及在區(qū)間[0,
12
]上的最大值和最小值;
(2)若f(x0)=
10
13
,x0∈[
π
2
,
12
],求cos2x0的值.

查看答案和解析>>

同步練習(xí)冊答案