(本小題滿分16分)已知橢圓中心為,右頂點(diǎn)為,過定點(diǎn)直線交橢圓于、兩點(diǎn).
(1)若直線軸垂直,求三角形面積的最大值;
(2)若,直線的斜率為,求證:;
(3)在軸上,是否存在一點(diǎn),使直線的斜率的乘積為非零常數(shù)?若存在,求出點(diǎn)的坐標(biāo)和這個(gè)常數(shù);若不存在,說明理由.
解:設(shè)直線與橢圓的交點(diǎn)坐標(biāo)為.
(1)把代入可得:,    (2分)
,當(dāng)且僅當(dāng)時(shí)取等號(hào)   (4分)
(2)由,(6分)
所以
         (9分)
(3)(理)當(dāng)直線軸不垂直時(shí),可設(shè)直線方程為:,
消去整理得 
    ①         又      ②
若存在定點(diǎn)符合題意,且
         (11分)
把①、②式代入上式整理得
(其中都是常數(shù))
要使得上式對(duì)變量恒成立,當(dāng)且僅當(dāng)
,解得                          (13分)
當(dāng)時(shí),定點(diǎn)就是橢圓的右頂點(diǎn),此時(shí),;   
當(dāng)時(shí),定點(diǎn)就是橢圓的左頂點(diǎn),此時(shí),; (15分)
當(dāng)直線軸垂直時(shí),由,解得兩交點(diǎn)坐標(biāo)為
,可驗(yàn)證:
所以,存在一點(diǎn)(或),使直線的斜率的乘積為
非零常數(shù)(或).                     (16分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

是橢圓的左、右焦點(diǎn),點(diǎn)在橢圓上運(yùn)動(dòng),則的最大值是_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓的一個(gè)頂點(diǎn)和一個(gè)焦點(diǎn)分別是直線x+3y-6=0與兩坐標(biāo)軸的交點(diǎn),則橢圓的標(biāo)準(zhǔn)方程為                         

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分13分)已知在直角坐標(biāo)平面XOY中,有一個(gè)不在Y軸上的動(dòng)點(diǎn)P(x,y),到定點(diǎn)F(0,)的距離比它到X軸的距離多,記P點(diǎn)的軌跡為曲線C
(I)求曲線C的方程;
(II)已知點(diǎn)M在Y軸上,且過點(diǎn)F的直線與曲線C交于A、B兩點(diǎn),若 為正三角形,求M點(diǎn)的坐標(biāo)與直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

. (本小題滿分12分)已知拋物線的焦點(diǎn)以及橢圓
的上、下焦點(diǎn)及左、右頂點(diǎn)均在圓上.
(1)求拋物線和橢圓的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)的直線交拋物線、兩不同點(diǎn),交軸于點(diǎn),已知為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的左右焦點(diǎn)為,過點(diǎn)且斜率為正數(shù)的直線交橢圓兩點(diǎn),且成等差數(shù)列。
(1)求橢圓的離心率;
(2)若直線與橢圓交于兩點(diǎn),求使四邊形的面積最大時(shí)的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題12分)已知橢圓的中心在原點(diǎn),左焦點(diǎn)為,右頂點(diǎn)為,設(shè)點(diǎn).(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)若是橢圓上的動(dòng)點(diǎn),過P點(diǎn)向橢圓的長軸做垂線,垂足為Q求線段PQ的中點(diǎn)的軌跡方程;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓的焦距等于
A.1 B.2C.D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知、是橢圓C)的兩個(gè)焦點(diǎn),P為橢圓C上的一點(diǎn),且。若的面積為9,則_________。

查看答案和解析>>

同步練習(xí)冊(cè)答案