【題目】某車間生產(chǎn)某種電子元件,如果生產(chǎn)出一件正品,可獲利200元,如果生產(chǎn)出一件次品,則損失100元.已知該車間制造電子元件的過程中,次品率與日產(chǎn)量的函數(shù)關(guān)系是:

(1)寫出該車間的日盈利額(元)與日產(chǎn)量(件)之間的函數(shù)關(guān)系式;

(2)為使日盈利額最大,該車間的日產(chǎn)量應(yīng)定為多少件?

【答案】(1);(2)當(dāng)時(shí),最大,即該廠的日產(chǎn)量定為16件,能獲得最大盈利.

【解析】

試題(1))由題意可知次品率P=日產(chǎn)次品數(shù)÷日產(chǎn)量,每天生產(chǎn)x件,次品數(shù)為xP,正品數(shù)為x(1-P),即可寫出函數(shù);(2)利用導(dǎo)數(shù)求導(dǎo),令導(dǎo)數(shù)為0,即可求出函數(shù)的最值.

試題解析:

(1)由題意可知次品率P=日產(chǎn)次品數(shù)÷日產(chǎn)量,每天生產(chǎn)x件,次品數(shù)為xP,

正品數(shù)為x(1-P).

因?yàn)榇纹仿蔖=,當(dāng)每天生產(chǎn)x件時(shí),

有x·件次品,有x件正品,

所以T=200x-100x·

=25·.

(2)T′=-25·,

由T′=0,得x=16或x=-32(舍去)

當(dāng)0<x<16時(shí),T′>0;當(dāng)x>16時(shí),T′<0;

所以當(dāng)x=16時(shí),T最大,即該廠的日產(chǎn)量定為16件,能獲得最大盈利.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】展開式中前三項(xiàng)系數(shù)成等差數(shù)列,求:

(1)展開式中含x的一次冪的項(xiàng);

(2)展開式中所有x 的有理項(xiàng);

(3)展開式中系數(shù)最大的項(xiàng)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大型超市在2018年元旦舉辦了一次抽獎(jiǎng)活動,抽獎(jiǎng)箱里放有2個(gè)紅球,1個(gè)黃球和1個(gè)藍(lán)球(這些小球除顏色外大小形狀完全相同),從中隨機(jī)一次性取2個(gè)小球,每位顧客每次抽完獎(jiǎng)后將球放回抽獎(jiǎng)箱.活動另附說明如下:

①凡購物滿100(含100)元者,憑購物打印憑條可獲得一次抽獎(jiǎng)機(jī)會;

②凡購物滿188(含188)元者,憑購物打印憑條可獲得兩次抽獎(jiǎng)機(jī)會;

③若取得的2個(gè)小球都是紅球,則該顧客中得一等獎(jiǎng),獎(jiǎng)金是一個(gè)10元的紅包;

④若取得的2個(gè)小球都不是紅球,則該顧客中得二等獎(jiǎng),獎(jiǎng)金是一個(gè)5元的紅包;

⑤若取得的2個(gè)小球只有1個(gè)紅球,則該顧客中得三等獎(jiǎng),獎(jiǎng)金是一個(gè)2元的紅包.

抽獎(jiǎng)活動的組織者記錄了該超市前20位顧客的購物消費(fèi)數(shù)據(jù)(單位:元),繪制得到如圖所示的莖葉圖.

(1)求這20位顧客中獲得抽獎(jiǎng)機(jī)會的人數(shù)與抽獎(jiǎng)總次數(shù)(假定每位獲得抽獎(jiǎng)機(jī)會的顧客都會去抽獎(jiǎng));

(2)求這20位顧客中獎(jiǎng)得抽獎(jiǎng)機(jī)會的顧客的購物消費(fèi)數(shù)據(jù)的中位數(shù)與平均數(shù)(結(jié)果精確到整數(shù)部分);

(3)分別求在一次抽獎(jiǎng)中獲得紅包獎(jiǎng)金10元,5元,2元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的右頂點(diǎn)為A,上頂點(diǎn)為B.已知橢圓的離心率為,

(1)求橢圓的方程;

(2)設(shè)直線與橢圓交于兩點(diǎn),與直線交于點(diǎn)M,且點(diǎn)P,M均在第四象限.若的面積是面積的2倍,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),曲線在點(diǎn)處切線與直線垂直.

(1)試比較的大小,并說明理由;

(2)若函數(shù)有兩個(gè)不同的零點(diǎn),,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的定義域是,,當(dāng)時(shí),.

1)求證:是奇函數(shù);

2)求在區(qū)間上的解析式;

3)是否存在正整數(shù),使得當(dāng)時(shí),不等式有解?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某河流上的一座水力發(fā)電站,每年六月份的發(fā)電量(單位:萬千瓦時(shí))與該河上游在六月份的降雨量(單位:毫米)有關(guān)據(jù)統(tǒng)計(jì),當(dāng)時(shí), ; 每增加10增加5.已知近20的值為:140,110,160,70,200,160,140,160,220,200,110,160,160,200,140110,160220,140,160

1)完成如下的頻率分布表:近20年六月份降雨量頻率分布表

2)假定今年六月份的降雨量與近20年六月份降雨量的分布規(guī)律相同,并將頻率視為概率,求今年六月份該水力發(fā)電站的發(fā)電量低于490(萬千瓦時(shí))或超過530(萬千瓦時(shí))的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若數(shù)列對任意滿足,下面給出關(guān)于數(shù)列的四個(gè)命題:①可以是等差數(shù)列,②可以是等比數(shù)列;③可以既是等差又是等比數(shù)列;④可以既不是等差又不是等比數(shù)列;則上述命題中,正確的個(gè)數(shù)為(

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中,.

1)若,,且對任意的,都有,求實(shí)數(shù)的取值范圍;

2)若,且單調(diào)遞增,求的最大值.

查看答案和解析>>

同步練習(xí)冊答案