【答案】
分析:本題考查的知識點是指數(shù)函數(shù)的單調性、對數(shù)函數(shù)的單調性及復合函數(shù)單調性,我們要先求出函數(shù)的定義域,然后從內到外逐步分析,(
)
x、[1-(
)
x]的單調性和取值范圍,再結合0<a<1及復合函數(shù)“同增異減”的原則,判斷l(xiāng)og
a[1-(
)
x]的單調性及函數(shù)值的取值范圍.
解答:解:要使函數(shù)數(shù)y=log
a[1-(
)
x]的解析式有意義
則1-(
)
x>0
即(
)
x<1
即x>0
當x∈(0,+∞)時,(
)
x為減函數(shù),且0<(
)
x<1
[1-(
)
x]為增函數(shù),且0<[1-(
)
x]<1
∵0<a<1,故
y=log
a[1-(
)
x]為減函數(shù),且y>0
故選A
點評:函數(shù)y=a
x和函數(shù)y=log
ax,在底數(shù)a>1時,指數(shù)函數(shù)和對數(shù)函數(shù)在其定義域上均為增函數(shù),當?shù)讛?shù)0<a<1時,指數(shù)函數(shù)和對數(shù)函數(shù)在其定義域上均為減函數(shù),而f(-x)與f(x)的圖象關于Y軸對稱,其單調性相反,故函數(shù)y=a
-x和函數(shù)y=log
a(-x),在底數(shù)a>1時,指數(shù)函數(shù)和對數(shù)函數(shù)在其定義域上均為減函數(shù),當?shù)讛?shù)0<a<1時,指數(shù)函數(shù)和對數(shù)函數(shù)在其定義域上均為增函數(shù).