【題目】今年1月至2月由新型冠狀病毒引起的肺炎病例陡然增多,為了嚴(yán)控疫情傳播,做好重點(diǎn)人群的預(yù)防工作,某地區(qū)共統(tǒng)計(jì)返鄉(xiāng)人員人,其中歲及以上的共有.人中確診的有名,其中歲以下的人占.

確診患新冠肺炎

未確診患新冠肺炎

合計(jì)

50歲及以上

40

50歲以下

合計(jì)

10

100

1)試估計(jì)歲及以上的返鄉(xiāng)人員感染新型冠狀病毒引起的肺炎的概率;

2)請將下面的列聯(lián)表補(bǔ)充完整,并判斷是否有%的把握認(rèn)為是否確診患新冠肺炎與年齡有關(guān);

參考表:

0.10

0.05

0.010

0.005

0.001

2.706

3.841

6.635

7.879

10.828

參考公式:,其中.

【答案】1;(2)列聯(lián)表見解析,%的把握認(rèn)為是否確診患新冠肺炎與年齡有關(guān).

【解析】

1)根據(jù)題意,計(jì)算出歲及以上確診人數(shù),結(jié)合歲及以上的全部人數(shù),即可計(jì)算;

(2)補(bǔ)充列聯(lián)表,計(jì)算,結(jié)合參考數(shù)據(jù),即可判斷.

1)因?yàn)?/span>人中確診的有名,歲以下的人占,

所以歲以下的確診人數(shù)為,歲及以上確診人數(shù)為,

因?yàn)?/span>歲及以上的共有人,

所以歲及以上的返鄉(xiāng)人員感染新型冠狀病毒引起的肺炎的頻率為.

2)列聯(lián)表補(bǔ)充如下:

確診患新冠肺炎

未確診患新冠肺炎

合計(jì)

50歲以上

7

33

40

50歲以下

3

57

60

合計(jì)

10

90

100

.

所以有%的把握認(rèn)為是否確診患新冠肺炎與年齡有關(guān).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)若內(nèi)單調(diào)遞減,求實(shí)數(shù)的取值范圍;

(Ⅱ)若函數(shù)有兩個(gè)極值點(diǎn)分別為,,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】記不等式組 ,表示的平面區(qū)域?yàn)?/span> .下面給出的四個(gè)命題: ; ; 其中真命題的是:

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列結(jié)論中正確的個(gè)數(shù)是(

①在中,“”是“”的必要不充分條件;

②若的最小值為2;

③夾在圓柱的兩個(gè)平行截面間的幾何體是圓柱;

④數(shù)列的通項(xiàng)公式為,則數(shù)列的前項(xiàng)和.(

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是半圓O的直徑,C是半圓O上除A,B外的一個(gè)動(dòng)點(diǎn),DC垂直于半圓O所在的平面,DCEB,DCEB1,AB4.

1)證明:平面ADE⊥平面ACD

2)當(dāng)C點(diǎn)為半圓的中點(diǎn)時(shí),求二面角DAEB的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a為實(shí)數(shù),函數(shù)f(x)=aln x+x2-4x.

(1)是否存在實(shí)數(shù)a,使得f(x)在x=1處取得極值?證明你的結(jié)論;

(2)設(shè)g(x)=(a-2)x,若x0,使得f(x0)≤g(x0)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某民航部門統(tǒng)計(jì)的2019年春運(yùn)期間12個(gè)城市售出的往返機(jī)票的平均價(jià)格以及相比上年同期變化幅度的數(shù)據(jù)統(tǒng)計(jì)圖表如圖所示,根據(jù)圖表,下面敘述正確的是( )

A. 同去年相比,深圳的變化幅度最小且廈門的平均價(jià)格有所上升

B. 天津的平均價(jià)格同去年相比漲幅最大且2019年北京的平均價(jià)格最高

C. 2019年平均價(jià)格從高到低居于前三位的城市為北京、深圳、廣州

D. 同去年相比,平均價(jià)格的漲幅從高到低居于前三位的城市為天津、西安、南京

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),,其中a,.

1)求的單調(diào)區(qū)間;

2)若存在極值點(diǎn),且,其中,求證:

3)設(shè),函數(shù),求證:在區(qū)間上的最大值不小于.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)點(diǎn)為拋物線上的動(dòng)點(diǎn),是拋物線的焦點(diǎn),當(dāng)時(shí),

1)求拋物線的方程;

2)過點(diǎn)作圓的切線,,分別交拋物線于點(diǎn).當(dāng)時(shí),求面積的最小值.

查看答案和解析>>

同步練習(xí)冊答案