【題目】已知某校運(yùn)動(dòng)會(huì)男生組田徑綜合賽以選手三項(xiàng)運(yùn)動(dòng)的綜合積分高低決定排名.具體積分規(guī)則如表1所示,某代表隊(duì)四名男生的模擬成績(jī)?nèi)绫?/span>2.

1 田徑綜合賽項(xiàng)目及積分規(guī)則

2 某隊(duì)模擬成績(jī)明細(xì)

根據(jù)模擬成績(jī),該代表隊(duì)?wèi)?yīng)選派參賽的隊(duì)員是:( )

A.B.C.D.

【答案】B

【解析】

根據(jù)積分規(guī)則,分別計(jì)算出甲乙丙丁四人的總得分,即可得解.

由題,甲各項(xiàng)得分為:100米跑60-15=45分;跳高60+4=64;擲實(shí)心球60+15=75;則總分為45+64+75=184

乙各項(xiàng)得分為:100米跑60+20=80分;跳高60+10=70;擲實(shí)心球60-5=55,則總分為80+70+55=205

丙各項(xiàng)得分為:100米跑60+5=65分;跳高60+6=66;擲實(shí)心球60+10=70,則總分為65+66+70=201

丁各項(xiàng)得分為:100米跑60-5=55分;跳高60+2=62;擲實(shí)心球60+5=65,則總分為55+62+65=182,綜上,乙得分最多.

故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱錐D-ABC中,,E,F分別為DBAB的中點(diǎn),且.

1)求證:平面平面ABC;

2)求二面角D-CE-F的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓,圓,動(dòng)圓P與圓M外切并且與圓N內(nèi)切,圓心P的軌跡為曲線C.

1)求曲線C的方程;

2)設(shè)不經(jīng)過(guò)點(diǎn)的直線l與曲線C相交于A,B兩點(diǎn),直線QA與直線QB的斜率均存在且斜率之和為-2,證明:直線l過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知的兩個(gè)頂點(diǎn)的坐標(biāo)分別為,且所在直線的斜率之積等于,記頂點(diǎn)的軌跡為.

Ⅰ)求頂點(diǎn)的軌跡的方程;

Ⅱ)若直線與曲線交于兩點(diǎn),點(diǎn)在曲線上,且的重心(為坐標(biāo)原點(diǎn)),求證:的面積為定值,并求出該定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校為了了解高一年級(jí)學(xué)生學(xué)習(xí)數(shù)學(xué)的狀態(tài),從期中考試成績(jī)中隨機(jī)抽取50名學(xué)生的數(shù)學(xué)成績(jī),按成績(jī)分組:第1,第2,第3,第4,第5,得到的頻率分布直方圖如圖所示.

(1)由頻率分布直方圖,估計(jì)這50名學(xué)生數(shù)學(xué)成績(jī)的中位數(shù)和平均數(shù)(保留到0.01);

(2)該校高一年級(jí)共有1000名學(xué)生,若本次考試成績(jī)90分以上(含90分)為優(yōu)秀等次,則根據(jù)頻率分布直方圖估計(jì)該校高一學(xué)生數(shù)學(xué)成績(jī)達(dá)到優(yōu)秀等次的人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】曲線為參數(shù)).在以為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,曲線.

1)求曲線的極坐標(biāo)方程;

2)若曲線與曲線相交于點(diǎn),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】3個(gè)紅球與3個(gè)黑球隨機(jī)排成一行,從左到右依次在球上標(biāo)記1,2,345,6,則紅球上的數(shù)字之和小于黑球上的數(shù)字之和的概率為(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)某相鄰兩支圖象與坐標(biāo)軸分別變于點(diǎn),則方程所有解的和為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】德國(guó)著名數(shù)學(xué)家狄利克雷(Dirichlet,1805~1859)在數(shù)學(xué)領(lǐng)域成就顯著.19世紀(jì),狄利克雷定義了一個(gè)“奇怪的函數(shù)” 其中R為實(shí)數(shù)集,Q為有理數(shù)集.則關(guān)于函數(shù)有如下四個(gè)命題,正確的為( )

A.函數(shù)是偶函數(shù)

B.,,恒成立

C.任取一個(gè)不為零的有理數(shù)T,對(duì)任意的恒成立

D.不存在三個(gè)點(diǎn),,,使得為等腰直角三角形

查看答案和解析>>

同步練習(xí)冊(cè)答案