5.在長度為3的線段上隨機取兩點,將其分成三條線段,則恰有兩條線段單位長大于1的概率為$\frac{1}{3}$.

分析 先設(shè)其中兩段的長度分別為x、y,分別表示出隨機分成3段的x,y的約束條件和恰有兩條線段的長大于1的約束條件,再畫出約束條件表示的平面區(qū)域,利用面積測度即可求出所求.

解答 解:設(shè)三段長分別為x,y,3-x-y,
則總樣本空間為$\left\{\begin{array}{l}{0<x<3}\\{0<y<3}\\{x+y<3}\end{array}\right.$,其面積為$\frac{9}{2}$,
恰有兩條線段的長大于1的事件的空間為$\left\{\begin{array}{l}{x>1}\\{y>1}\end{array}\right.$或$\left\{\begin{array}{l}{x>1}\\{3-x-y>1}\end{array}\right.$或$\left\{\begin{array}{l}{y>1}\\{3-x-y>1}\end{array}\right.$,其面積為$\frac{3}{2}$,
則所求概率為$\frac{\frac{3}{2}}{\frac{9}{2}}$=$\frac{1}{3}$.
故答案為:$\frac{1}{3}$.

點評 本題主要考查了幾何概型,如果每個事件發(fā)生的概率只與構(gòu)成該事件區(qū)域的長度(面積或體積)成比例,則稱這樣的概率模型為幾何概率模型,簡稱為幾何概型.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.定義域為R的函數(shù)f(x)的圖象關(guān)于直線x=1對稱,當(dāng)a∈[0,l]時,f(x)=x,且對任意x∈R只都有f(x+2)=-f(x),g(x)=$\left\{\begin{array}{l}f(x)(x≥0)\\-{log_{2013}}(-x)(x<0)\end{array}\right.$,則方程g(x)-g(-x)=0實數(shù)根的個數(shù)為(  )
A.1006B.1007C.2012D.2014

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.雙曲線$\frac{x^2}{5}-\frac{y^2}{4}=1$的離心率為( 。
A.4B.$\frac{{3\sqrt{5}}}{5}$C.$\frac{{\sqrt{5}}}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若ab=-2,則a2+b2-1的最小值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)f(x)=$\frac{x+1}{x}+a1nx(x>0)$.
(1)求f(x)的單調(diào)區(qū)間;
(2)證明:0≤a≤1時,函數(shù)f(x)在(0,+∞)上沒有零點;
(3)設(shè)F(x)=f(x)-$\frac{1}{x}$(a>0,x>0).A(x1y1)B(x2,y2)、C(x3,y3)依次是函數(shù)F(x)的圖象上從左至右的三點. 證明:△ABC是鈍角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知拋物線y=ax2(a>0)的焦點到準(zhǔn)線的距離為2,則a=( 。
A.4B.2C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.“|x-2|≤5”是“-3≤x≤7”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若變量x,y滿足$\left\{\begin{array}{l}x+y≤2\\ 2x-3y≤9\\ x≥0\end{array}\right.$,則x2+2x+y2的最大值是( 。
A.4B.9C.16D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知全集U=R,集合A={x||x|≤1},B={x|x≤1},則(∁UA)∩B等于( 。
A.{x|x≤-1}B.{x|x<-1}C.{-1}D.{x|-1<x|≤1}

查看答案和解析>>

同步練習(xí)冊答案