【題目】已知函數(shù)定義在上且滿足下列兩個(gè)條件:

①對(duì)任意都有;

②當(dāng)時(shí),有,

(1)求,并證明函數(shù)上是奇函數(shù);

(2)驗(yàn)證函數(shù)是否滿足這些條件;

(3)若,試求函數(shù)的零點(diǎn).

【答案】(1)見(jiàn)解析;(2)見(jiàn)解析;(3).

【解析】

代入即可求得,則可得,即可證明結(jié)論

根據(jù)函數(shù)的解析式求出定義域滿足條件,再根據(jù)對(duì)數(shù)的運(yùn)算性質(zhì),計(jì)算并進(jìn)行比較,根據(jù)對(duì)數(shù)函數(shù)的性質(zhì)判斷當(dāng)時(shí),的符號(hào),即可得證

用定義法先證明函數(shù)的單調(diào)性,然后轉(zhuǎn)化函數(shù)的零點(diǎn)為,利用條件進(jìn)行求解

(1)對(duì)條件中的,令.

再令可得

所以在(-1,1)是奇函數(shù).

(2)可得,其定義域?yàn)椋?1,1),

當(dāng)時(shí),

故函數(shù)是滿足這些條件.

(3)設(shè),則

,

由條件,從而有,即

上單調(diào)遞減,

由奇函數(shù)性質(zhì)可知,在(0,1)上仍是單調(diào)減函數(shù).

原方程即為,在(-1,1)上單調(diào)

故原方程的解為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為.

1求數(shù)列的通項(xiàng)公式;

2設(shè),,記數(shù)列的前項(xiàng)和.若對(duì), 恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,橢圓C: =1a>b>0過(guò)點(diǎn)P(1, ).離心率為

(1)求橢圓C的方程;

(2)設(shè)直線l與橢圓C交于A,B兩點(diǎn).

①若直線l過(guò)橢圓C的右焦點(diǎn),記△ABP三條邊所在直線的斜率的乘積為t.

t的最大值;

②若直線l的斜率為,試探究OA2+ OB2是否為定值,若是定值,則求出此

定值;若不是定值,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)經(jīng)銷一批進(jìn)價(jià)為每件30元的商品,在市場(chǎng)試銷中發(fā)現(xiàn),此商品的銷售單價(jià)x(元)與日銷售量y(件)之間有如下表所示的關(guān)系:

x

30

40

45

50

y

60

30

15

0

在所給的坐標(biāo)圖紙中,根據(jù)表中提供的數(shù)據(jù),描出實(shí)數(shù)對(duì)(xy)的對(duì)應(yīng)點(diǎn),并確定yx的一個(gè)函數(shù)關(guān)系式;

(2)設(shè)經(jīng)營(yíng)此商品的日銷售利潤(rùn)為P元,根據(jù)上述關(guān)系,寫出P關(guān)于x的函數(shù)關(guān)系式,并指出銷售單價(jià)x為多少元時(shí),才能獲得最大日銷售利潤(rùn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,從參加環(huán)保知識(shí)競(jìng)賽的學(xué)生中抽出名,將其成績(jī)(均為整數(shù))整理后畫出的頻率分布直方圖如下,觀察圖形,回答下列問(wèn)題:

(1)這一組的頻數(shù)、頻率分別是多少?

(2)估計(jì)這次環(huán)保知識(shí)競(jìng)賽的及格率(分及以上為及格)和平均數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,點(diǎn)A的極坐標(biāo)為(3, ),點(diǎn)B的極坐標(biāo)為(6, ),曲線C:(x﹣1)2+y2=1
(1)求曲線C和直線AB的極坐標(biāo)方程;
(2)過(guò)點(diǎn)O的射線l交曲線C于M點(diǎn),交直線AB于N點(diǎn),若|OM||ON|=2,求射線l所在直線的直角坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知矩形的長(zhǎng)為2,寬為1,.邊分別在.軸的正半軸上,點(diǎn)與坐標(biāo)原點(diǎn)重合(如圖所示)。將矩形折疊,使點(diǎn)落在線段上。

(1)若折痕所在直線的斜率為,試求折痕所在直線的方程;

(2)當(dāng)時(shí),求折痕長(zhǎng)的最大值;

(3)當(dāng)時(shí),折痕為線段,設(shè),試求的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列為等差數(shù)列,,.

(1) 求數(shù)列的通項(xiàng)公式;

(2)求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】高二某班50名學(xué)生在一次百米測(cè)試中,成績(jī)?nèi)慷冀橛?3秒到18秒之間,將測(cè)試結(jié)果按如下方式分成五組,第一組第二組,…,第五組,如圖是按上述分組方法得到的頻率分布直方圖

(1)請(qǐng)根據(jù)頻率分布直方圖估計(jì)該組數(shù)據(jù)的眾數(shù)和中位數(shù)(精確到0.1);

(2)從成績(jī)介于兩組的人中任取2人,求兩人分布來(lái)自不同組的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案