9.已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=-x2+ax.
(I)求函數(shù)f(x)的解析式;
(II)若函數(shù)f(x)為R上的單調(diào)減函數(shù),
①求a的取值范圍;
②若對(duì)任意實(shí)數(shù)m,f(m-1)+f(m2+t)<0恒成立,求實(shí)數(shù)t的取值范圍.

分析 (I)當(dāng)x<0時(shí),-x>0,由已知表達(dá)式可求f(-x),根據(jù)奇函數(shù)性質(zhì)可求f(x);
(II)①借助二次函數(shù)圖象的特征及奇函數(shù)性質(zhì)可求a的范圍;
②利用奇函數(shù)性質(zhì)及單調(diào)遞減性質(zhì)可去掉不等式中的符號(hào)“f”,進(jìn)而可轉(zhuǎn)化為函數(shù)最值問(wèn)題處理.

解答 解:(I)當(dāng)x<0時(shí),-x>0,又因?yàn)閒(x)為奇函數(shù),
所以f(x)=-f(-x)=-(-x2-ax)=x2+ax,
所以f(x)=$\left\{\begin{array}{l}{-{x}^{2}+ax,x≥0}\\{{x}^{2}+ax,x<0}\end{array}\right.$.
(II)①當(dāng)a≤0時(shí),對(duì)稱軸x=$\frac{a}{2}$≤0,所以f(x)=-x2+ax在[0,+∞)上單調(diào)遞減,
由于奇函數(shù)關(guān)于原點(diǎn)對(duì)稱的區(qū)間上單調(diào)性相同,所以f(x)在(-∞,0)上單調(diào)遞減,
所以a≤0時(shí),f(x)在R上為單調(diào)遞減函數(shù),
當(dāng)a>0時(shí),f(x)在(0,$\frac{a}{2}$)遞增,在($\frac{a}{2}$,+∞)上遞減,不合題意,
所以函數(shù)f(x)為單調(diào)減函數(shù)時(shí),a的范圍為a≤0.
②f(m-1)+f(m2+t)<0,∴f(m-1)<-f(m2+t),
又f(x)是奇函數(shù),∴f(m-1)<f(-t-m2),
又因?yàn)閒(x)為R上的單調(diào)遞減函數(shù),所以m-1>-t-m2恒成立,
所以$t>-{m}^{2}-m+1=-(m+\frac{1}{2})^{2}+\frac{5}{4}$恒成立,所以t>$\frac{5}{4}$,
即實(shí)數(shù)t的范圍為:($\frac{5}{4}$,+∞).

點(diǎn)評(píng) 本題考查函數(shù)的奇偶性、單調(diào)性及其應(yīng)用,考查不等式恒成立問(wèn)題,考查學(xué)生分析問(wèn)題解決問(wèn)題的能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知在平面直角坐標(biāo)系中,曲線C1的參數(shù)方程是$\left\{\begin{array}{l}x=-1+cosθ\\ y=sinθ\end{array}\right.$(θ為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程是ρ=2sinθ.
(Ⅰ) 求曲線C1與C2交點(diǎn)的平面直角坐標(biāo);
(Ⅱ) 點(diǎn)A,B分別在曲線C1,C2上,當(dāng)|AB|最大時(shí),求△OAB的面積(O為坐標(biāo)原點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.?dāng)?shù)列{an}中,已知a1=1,a2=a,an+1=k(an+an+2)對(duì)任意n∈N*都成立,數(shù)列{an}的前n項(xiàng)和為Sn.(這里a,k均為實(shí)數(shù))
(1)若{an}是等差數(shù)列,求Sn;
(2)若a=1,k=-$\frac{1}{2}$,求Sn;
(3)是否存在實(shí)數(shù)k,使數(shù)列{an}是公比不為1的等比數(shù)列,且任意相鄰三項(xiàng)am,am+1,am+2按某順序排列后成等差數(shù)列?若存在,求出所有k的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.某公司即將推車一款新型智能手機(jī),為了更好地對(duì)產(chǎn)品進(jìn)行宣傳,需預(yù)估市民購(gòu)買該款手機(jī)是否與年齡有關(guān),現(xiàn)隨機(jī)抽取了50名市民進(jìn)行購(gòu)買意愿的問(wèn)卷調(diào)查,若得分低于60分,說(shuō)明購(gòu)買意愿弱;若得分不低于60分,說(shuō)明購(gòu)買意愿強(qiáng),調(diào)查結(jié)果用莖葉圖表示如圖所示.
(1)根據(jù)莖葉圖中的數(shù)據(jù)完成2×2列聯(lián)表,并判斷是否有95%的把握認(rèn)為市民是否購(gòu)買該款手機(jī)與年齡有關(guān)?
購(gòu)買意愿強(qiáng)購(gòu)買意愿弱合計(jì)
20-40歲
大于40歲
合計(jì)
(2)從購(gòu)買意愿弱的市民中按年齡進(jìn)行分層抽樣,共抽取5人,從這5人中隨機(jī)抽取2人進(jìn)行采訪,記抽到的2人中年齡大于40歲的市民人數(shù)為X,求X的分布列和數(shù)學(xué)期望.
附:${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.
P(K2≥k00.1000.0500.0100.001
k02.7063.8416.63510.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù) f( x)=x 3-bx 2+2cx的導(dǎo)函數(shù)的圖象關(guān)于直線 x=2對(duì)稱.
(1)求 b的值;
(2)若函數(shù) f( x)無(wú)極值,求 c的取值范圍;
(3)若 f( x)在 x=t處取得極小值,求此極小值為 g( t)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x+y≤2\\ x-y≤2\\ 0≤x≤1\end{array}\right.$則z=2x+4y的最大值是( 。
A.-4B.2C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知雙曲線${C_1}:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$與圓${C_2}:{x^2}+{y^2}={c^2}$(c是雙曲線的半焦距)相交于第二象限內(nèi)一點(diǎn)M,點(diǎn)N在x軸下方且在圓C2上,又F1,F(xiàn)2分別是雙曲線C1的左右焦點(diǎn),若$∠{F_2}NM=\frac{π}{3}$,則雙曲線的離心率為( 。
A.$\sqrt{3}$B.2C.$\sqrt{3}+1$D.$\frac{{\sqrt{3}+1}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P(x0,$\frac{5}{2}$)為雙曲線上一點(diǎn),若△PF1F2的內(nèi)切圓半徑為1,且圓心G到原點(diǎn)O的距離為$\sqrt{5}$,則雙曲線的方程為(  )
A.$\frac{{x}^{2}}{3}$-$\frac{8{y}^{2}}{25}$=1B.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1C.$\frac{{x}^{2}}{6}$-$\frac{2{y}^{2}}{25}$=1D.$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{50}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知函數(shù)f(x)是偶函數(shù),定義域?yàn)镽,g(x)=f(x)+2x,若g(log27)=3,則$g({{{log}_2}\frac{1}{7}})$=( 。
A.-4B.4C.$-\frac{27}{7}$D.$\frac{27}{7}$

查看答案和解析>>

同步練習(xí)冊(cè)答案