11.某工廠為了對新研發(fā)的一種產(chǎn)品進(jìn)行合理定價,將該產(chǎn)品按事先擬定的價格進(jìn)行試銷,得到如表數(shù)據(jù):
單價x(元)88.28.48.68.89
銷量y(件)908483807568
(Ⅰ)求回歸直線方程$\widehat{y}$=$\widehat$x+$\hat{a}$,其中${\;}_^{∧}$=-20,${\;}_{a}^{∧}$=y-${\;}_^{∧}$$\overline{x}$;
(Ⅱ)預(yù)計(jì)在今后的銷售中,銷量與單價仍然服從(Ⅰ)中的關(guān)系,且該產(chǎn)品的成本是5元/件,為使工廠獲得最大利潤,該產(chǎn)品的單價應(yīng)定為多少元?(利潤=銷售收入-成本)

分析 (Ⅰ)求出樣本中心點(diǎn)的坐標(biāo),可得${\;}_{a}^{∧}$,即可回歸直線方程$\widehat{y}$=$\widehat$x+$\hat{a}$;
(Ⅱ)確定利潤函數(shù),利用配方法,即可得出結(jié)論.

解答 解:(Ⅰ)由題意,$\overline{x}=8.5,\overline{y}=80,\hat{y}=-20x+250$;
(Ⅱ)$L=(x-5)(-20x+250)=-20{{(x-\frac{35}{4})}^{2}}+281.25$,
所以當(dāng)x=8.75時,工廠獲得最大利潤.

點(diǎn)評 本題考查回歸直線方程,考查利用數(shù)學(xué)知識解決實(shí)際問題,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.用5種不同的顏色給圖中四個區(qū)域涂色,允許同一種顏色使用多次,但相鄰區(qū)域必須涂不同顏色,不同的涂色方法有(  )
A.180B.240C.160D.320

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.號碼為1、2、3、4、5、6的六個大小相同的球,放入編號為1、2、3、4、5、6的六個盒子中,每個盒子只能放一個球.
(1)若1號球只能放在1號盒子中,6號球不能放在6號的盒子中,則不同的放法有多少種?
(2)若5、6號球只能放入號碼是相鄰數(shù)字的兩個盒子中且不與4號球相鄰,則不同的放法有多少種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若x<-3,則x+$\frac{2}{x+3}$的最大值為(  )
A.-2$\sqrt{2}$+3B.$-2\sqrt{2}-3$C.$2\sqrt{2}+3$D.$2\sqrt{2}-3$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.(1)化簡Sn=1+2a+3a2+4a3+…+nan-1,a≠0,n∈N*;
(2)已知等比數(shù)列{an}中,a1=3,a4=81,若數(shù)列{bn}滿足bn=log3an,則數(shù)列{$\frac{1}{{{b_n}{b_{n+1}}}}$}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.解關(guān)于x的不等式$\frac{1}{|2x-3|}$>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知數(shù)列{an}的首項(xiàng)a1=3,an+1=3nan,則通項(xiàng)公式an=${3}^{\frac{(n-1)n}{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知數(shù)列{an}是首項(xiàng)a1=4,公比q≠1的等比數(shù)列,且4a1,a5,-2a3成等差數(shù)列,則公比q等于( 。
A.$\frac{1}{2}$B.-1C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知f(x)是定義在(0,+∞)上的增函數(shù),且f(x+y)=f(x)f(y),f(1)=3,求不等式f(x)f(x2-3)≤27的解集($\sqrt{3}$,2].

查看答案和解析>>

同步練習(xí)冊答案