某商店開張,采用摸獎形式吸引顧客,暗箱中共有6個除了顏色外完全相同的球,其中有1個紅球,2個白球和3個黑球,進(jìn)入商店的人都可以從箱中摸取兩球,若兩球顏色為一白一黑即可領(lǐng)取小禮品,則能得到小禮品的概率等于(  )
A、
1
5
B、
2
5
C、
3
5
D、
4
5
考點(diǎn):古典概型及其概率計算公式
專題:計算題,概率與統(tǒng)計
分析:首先由組合數(shù)公式,計算從袋中的6個球中任取2個的情況數(shù)目,再由分步計數(shù)原理計算取出的兩球為一白一黑的情況數(shù)目,進(jìn)而由等可能事件的概率公式,計算可得答案.
解答: 解:根據(jù)題意,袋中共有6個球,從中任取2個,有C62=15種不同的取法,
6個球中,有2個白球和3個黑球,則取出的兩球為一白一黑的情況有2×3=6種;
則能得到小禮品的概率等于
6
15
=
2
5

故選:B.
點(diǎn)評:本題考查等可能事件的概率計算,是基礎(chǔ)題,注意正確使用排列、組合公式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

sin4α
4sin2(
π
4
+α)tan(
π
4
-α)
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x)=x-
3
x
在P(x0,y0)處的切線于y軸以及直線y=x所圍成的三角形的面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0),點(diǎn)A,B1,B2,F(xiàn)依次為其左頂點(diǎn)、下頂點(diǎn)、上頂點(diǎn)和右焦點(diǎn),若直線 AB2與直線 B1F的交點(diǎn)恰在橢圓的右準(zhǔn)線上,則橢圓的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=sin(ωx-
π
6
)-2cos2
ωx
2
+1(ω>0),直線y=
3
與函數(shù)f(x)圖象相鄰兩公共點(diǎn)的距離為π
(Ⅰ)求ω的值;
(Ⅱ)在△ABC中,角A,B,C所對的邊分別是a,b,c,若點(diǎn)(
B
2
,0)是函數(shù)y=f(x)圖象的一個對稱中心,且b=3,sinA=3sinC,求a,c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用黑、藍(lán)2種顏色給如圖所示的笑臉涂色,每個圖形只能涂一種顏色,則兩只眼睛(即圖中A、B所示的區(qū)域)涂同種顏色而鼻子和嘴巴涂不同顏色的概率為( 。
A、
1
8
B、
1
4
C、
1
2
D、
3
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求證:質(zhì)數(shù)序列2,3,5,7,11,13,17,19…是無限的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的通項公式為an=(2n-1)•2n,我們用錯位相減法求其前n項和Sn,有Sn=1×2+3×22+5×23+…+(2n-1)•2n
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若曲線C1:ρ=2cosθ與曲線C2:y(y-mx-m)=0有4個不同的交點(diǎn),則實數(shù)m的取值范圍是(  )
A、(-
3
3
3
3
B、(-
3
3
,0)∪(0,
3
3
C、[-
3
3
,
3
3
]
D、(-∞,-
3
3
)∪(
3
3
,+∞)

查看答案和解析>>

同步練習(xí)冊答案