【題目】平面直角坐標(biāo)系中,經(jīng)過橢圓: 的一個焦點的直線與相交于兩點, 為的中點,且斜率是.
(Ⅰ)求橢圓的方程;
(Ⅱ)直線分別與橢圓和圓: 相切于點,求的最大值.
【答案】(Ⅰ) ;(Ⅱ)1.
【解析】試題分析:
(Ⅰ)設(shè)出點M,N的坐標(biāo),利用點差法計算可得,結(jié)合焦點坐標(biāo)有,據(jù)此計算可得橢圓的方程是;
(Ⅱ)設(shè)分別為直線與橢圓和圓的切點, ,聯(lián)立直線與橢圓的方程有,利用判別式,可得, ,直線與圓相切,則圓心到直線的距離等于半徑,據(jù)此可得, ,則,結(jié)合絕對不等式的結(jié)論有當(dāng)時, 的最大值是1.
試題解析:
(Ⅰ)設(shè), ,則
, , , ,
由此可得, ,
又由題意知, 的右焦點是,故,
因此, ,所以橢圓的方程是;
(Ⅱ)設(shè)分別為直線與橢圓和圓的切點, ,
直線的方程為: ,代入得
,判別式,得①,
,
直線與相切,所以,即,再由①得, ,
,
因為,當(dāng)時取等號,所以,
因此當(dāng)時, 的最大值是1
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)在上存在唯一的滿足, 那么稱函數(shù)是上的“單值函數(shù)”.已知函數(shù)是上的“單值函數(shù)”,當(dāng)實數(shù)取最小值時,函數(shù)在上恰好有兩點零點,則實數(shù)的取值范圍是___________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知, .
(1)求函數(shù)的增區(qū)間;
(2)若函數(shù)有兩個零點,求實數(shù)的取值范圍,并說明理由;
(3)設(shè)正實數(shù), 滿足,當(dāng)時,求證:對任意的兩個正實數(shù), 總有.
(參考求導(dǎo)公式: )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,底面是的菱形,側(cè)面是邊長為2的正三角形,且與底面垂直, 為的中點.
(1)求證: 平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市根據(jù)地理位置劃分成了南北兩區(qū),為調(diào)查該市的一種經(jīng)濟(jì)作物(下簡稱 作物)的生長狀況,用簡單隨機(jī)抽樣方法從該市調(diào)查了 500 處 作物種植點,其生長狀況如表:
其中生長指數(shù)的含義是:2 代表“生長良好”,1 代表“生長基本良好”,0 代表“不良好,但仍有收成”,﹣1代表“不良好,絕收”.
(1)估計該市空氣質(zhì)量差的作物種植點中,不絕收的種植點所占的比例;
(2)能否有 99%的把握認(rèn)為“該市作物的種植點是否絕收與所在地域有關(guān)”?
(3)根據(jù)(2)的結(jié)論,能否提供更好的調(diào)查方法來估計該市作物的種植點中,絕收種植點的比例?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某生態(tài)園將一塊三角形地的一角開辟為水果園,已知角為, 的長度均大于200米,現(xiàn)在邊界處建圍墻,在處圍竹籬笆.
(1)若圍墻、總長度為200米,如何可使得三角形地塊面積最大?
(2)已知竹籬笆長為米, 段圍墻高1米, 段圍墻高2米,造價均為每平方米100元,求圍墻總造價的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓的半徑垂直于直徑, 為上一點, 的延長線交圓于點,過點的切線交的延長線于點,連接.
(1)求證: ;
(2)若, ,求的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰梯形中, , 于點, ,且.沿把折起到的位置(如圖),使.
(I)求證: 平面.
(II)求三棱錐的體積.
(III)線段上是否存在點,使得平面,若存在,指出點的位置并證明;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com