7.如圖,四邊形ABCD內(nèi)接于⊙O,過點A作⊙O的切線EP交CB的延長線于P,∠PAB=35°.
(1)若BC是⊙O的直徑,求∠D的大;
(2)若∠PAB=35°,求證:$\frac{D{A}^{2}}{A{P}^{2}}$=$\frac{DC}{PC}$.

分析 (1)由弦切角定理得∠ACB=∠PAB=25°,從而∠ABC=65°,由此利用四邊形ABCD內(nèi)接于⊙O,能求出∠D.
(2)由∠DAE=25°,∠ACD=∠PAB,∠D=∠PBA,從而△ADC∽△PBA,由此能證明DA2=DC•BP,AP2=PC•BP,即可證明結(jié)論.

解答 (1)解:∵EP與⊙O相切于點A,∴∠ACB=∠PAB=35°,
又BC是⊙O的直徑,∴∠ABC=55°.
∵四邊形ABCD內(nèi)接于⊙O,∴∠ABC+∠D=180°,
∴∠D=112°.
(2)證明:∵∠DAE=35°,
∴∠ACD=∠PAB,∠D=∠PBA,
∴△ADC∽△ABP,
∴$\frac{DA}{BP}$=$\frac{DC}{BA}$,∠DBA=∠BDA,
∴DA=BA,∴DA2=DC•BP,AP2=PC•BP,
∴$\frac{D{A}^{2}}{A{P}^{2}}$=$\frac{DC}{PC}$.

點評 本題考查角的大小的求法,考查三角形相似的判定與性質(zhì),是中檔題,解題時要認(rèn)真審題,注意弦切角定理的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果是( 。
A.1B.$\frac{4}{3}$C.$\frac{5}{4}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足,|$\overrightarrow{a}$|=2,|$\overrightarrow$|=4,且($\overrightarrow{a}$-$\overrightarrow$)•$\overrightarrow$=-20.
(1)求向量$\overrightarrow{a}$與$\overrightarrow$的夾角;
(2)求|3$\overrightarrow{a}$+$\overrightarrow$|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.230+3除以7的余數(shù)是4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖所示,AB為圓O的直徑,BC,CD為圓O的切線,B,D為切點.
(Ⅰ)求證:AD∥OC;
(Ⅱ)若AD•OC=8,求圓O的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖1,在直角梯形ABCD中,∠ADC=90°,AB∥CD,AD=4,CD=3,AB=$\frac{25}{3}$,將△ACD折起,使二面角D′-AC-B為直二面角,得到如圖2所示的空間幾何體D′-ABC.

(1)求證:AD′⊥平面BCD′;
(2)求直線AD′與平面ABC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,⊙O的直徑AB的延長線與弦CD的延長線相交于點P,E為⊙O上的一點,$\widehat{AE}$=$\widehat{AC}$,DE交AB于點F.
(1)求證:PF•PO=PA•PB;
(2)若PD=4,PB=2,DF=$\frac{20}{7}$,求弦CD的弦心距.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.三棱錐A-BCD中,BC⊥CD,AB⊥AC,∠ABC=60°,BC=CD=2,點E,F(xiàn),G分別是棱AC,BC,BD的中點,直線AD與平面EFG的交點為H.
(1)求$\frac{AH}{HD}$的值;
(2)若AD=$\sqrt{5}$,求二面角A-BD-C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.高三某班有學(xué)生60人,現(xiàn)將所有同學(xué)從01~60隨機(jī)編號,然后用系統(tǒng)抽樣的方法抽取一個容量為5的樣本,已知編號為17的同學(xué)在樣本中,則以下會被抽到的編號為(  )
A.08B.25C.41D.54

查看答案和解析>>

同步練習(xí)冊答案