已知函數(shù)(為非零常數(shù)).
(Ⅰ)當(dāng)時(shí),求函數(shù)的最小值;
(Ⅱ)若恒成立,求的值;
(Ⅲ)對于增區(qū)間內(nèi)的三個(gè)實(shí)數(shù)(其中),
證明:.
(Ⅰ)(Ⅱ)(Ⅲ)由已知得:,
. 設(shè)
,在內(nèi)是減函數(shù),,即同理,∴
解析試題分析:(Ⅰ)由,得, 1分
令,得. 當(dāng),知在單調(diào)遞減;
當(dāng),知在單調(diào)遞增;
故的最小值為. 4分
(Ⅱ),當(dāng)時(shí),恒小于零,單調(diào)遞減.
當(dāng)時(shí),,不符合題意. 5分
對于,由得
當(dāng)時(shí),,∴在單調(diào)遞減;
當(dāng)時(shí),,∴在單調(diào)遞增;
于是的最小值為. 7分
只需成立即可,構(gòu)造函數(shù).
∵,∴在上單調(diào)遞增,在上單調(diào)遞減,
則,僅當(dāng)時(shí)取得最大值,故 9分
(Ⅲ)由已知得:,
. 設(shè)
,在內(nèi)是減函數(shù),,即同理,∴
考點(diǎn):函數(shù)單調(diào)性最值
點(diǎn)評:求函數(shù)最值要結(jié)合函數(shù)的單調(diào)區(qū)間確定最值點(diǎn)位置,第二問中不等式恒成立求參數(shù)范圍常采用分離參數(shù)法轉(zhuǎn)化為求函數(shù)最值問題,第三問將證明不等式轉(zhuǎn)化為求函數(shù)最值
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),點(diǎn)為一定點(diǎn),直線分別與函數(shù)的圖象和軸交于點(diǎn),,記的面積為.
(I)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(II)當(dāng)時(shí), 若,使得, 求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=-ln(x+m).
(Ι)設(shè)x=0是f(x)的極值點(diǎn),求m,并討論f(x)的單調(diào)性;
(Ⅱ)當(dāng)m≤2時(shí),證明f(x)>0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),,
⑴求函數(shù)的單調(diào)區(qū)間;
⑵記函數(shù),當(dāng)時(shí),在上有且只有一個(gè)極值點(diǎn),求實(shí)數(shù)的取值范圍;
⑶記函數(shù),證明:存在一條過原點(diǎn)的直線與的圖象有兩個(gè)切點(diǎn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)=x+ax2+blnx,曲線y =過P(1,0),且在P點(diǎn)處的切斜線率為2.
(1)求a,b的值;
(2)證明:≤2x-2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(Ⅰ)若,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)的圖象在點(diǎn)(2,f(2))處的切線的傾斜角為,對于任意的,函數(shù) 是的導(dǎo)函數(shù))在區(qū)間上總不是單調(diào)函數(shù),求的取值范圍;
(Ⅲ)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某商場銷售某種商品的經(jīng)驗(yàn)表明,該商品每日的銷售量y(單位:千克)與銷售價(jià)格x(單位:元/千克)滿足關(guān)系式,其中3<x<6,a 為常數(shù),已知銷售價(jià)格為5元/千克時(shí),每日可售出該商品11千克。
(I)求a的值
(II)若該商品的成品為3元/千克,試確定銷售價(jià)格x的值,使商場每日銷售該商品所獲得的利潤最大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(為常數(shù),是自然對數(shù)的底數(shù)),曲線在點(diǎn)處的切線與軸平行.
(Ⅰ)求的值;
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)設(shè),其中為的導(dǎo)函數(shù).證明:對任意.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com