是定義在上的函數(shù),且對任意實數(shù),都有,且,,則的值是
A.2014B.2015C.2016D.2017
C

試題分析: ,綜上可得,所以。故C正確。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(2011•湖北)(1)已知函數(shù)f(x)=lnx﹣x+1,x∈(0,+∞),求函數(shù)f(x)的最大值;
(2)設a1,b1(k=1,2…,n)均為正數(shù),證明:
①若a1b1+a2b2+…anbn≤b1+b2+…bn,則≤1;
②若b1+b2+…bn=1,則≤b12+b22+…+bn2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

給出定義:若函數(shù)f(x)在D上可導,即f′(x)存在,且導函數(shù)f′(x)在D上也可導,則稱f(x)在D上存在二階導函數(shù),記f″(x)=(f′(x))′,若f″(x)<0在D上恒成立,則稱f(x)在D上為凸函數(shù).以下四個函數(shù)在(0,)上不是凸函數(shù)的是________.
①f(x)=sim x+cos x     ②f(x)=ln x-2x
③f(x)=x3+2x-1       ④f(x)=x·ex

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)的定義域為,若存在常數(shù),對任意,有,則稱函數(shù).給出下列函數(shù):
;     ②;  ③;   ④;
是定義在R上的奇函數(shù),且滿足對一切實數(shù)均有.其中是函數(shù)的序號是(   )
A.①②④B.①②⑤C.①③④D.①④⑤

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某市居民自來水收費標準如下:每戶每月用水不超過4噸時,每噸為1.80元,當用水超過4噸時,超過部分每噸3.00元,某月甲、乙兩戶共交水費y元,已知甲、乙兩戶該月用水量分別為5x噸、3x噸.
(1)求y關于x的函數(shù);
(2)若甲、乙兩戶該月共交水費26.4元,分別求出甲、乙兩戶該月的用水量和水費.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

某電信公司推出兩種手機收費方式:A種方式是月租20元,B種方式是月租0元.一個月的本地網(wǎng)內通話時間t(分鐘)與電話費s(元)的函數(shù)關系如圖所示,當通話150分鐘時,這兩種方式電話費相差(  )
A.10元B.20元C.30元D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)的圖象與函數(shù)h(x)=x++2的圖象關于點A(0,1)對稱.
(1)求函數(shù)f(x)的解析式;
(2)若g(x)=f(x)+,g(x)在區(qū)間(0,2]上的值不小于6,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設集合A=[0,),B=[,1],函數(shù)f(x)=,若x0∈A,且f[f(x0)]∈A,則x0的取值范圍是(  )
A.(0,]B.(,)
C.(]D.[0,]

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

具有性質:=-f(x)的函數(shù),我們稱為滿足“倒負”變換的函數(shù),下列函數(shù):
①y=x-;②y=x+;③y=,其中滿足“倒負”變換的函數(shù)是________(填序號).

查看答案和解析>>

同步練習冊答案