【題目】若定義在區(qū)間D上的函數y=f(x)滿足:對x∈D,M∈R,使得|f(x)|≤M恒成立,則稱函數y=f(x)在區(qū)間D上有界.則下列函數中有界的是: .
①y=sinx;② ;③y=tanx;④ ;
⑤y=x3+ax2+bx+1(﹣4≤x≤4),其中a,b∈R.
【答案】①④⑤
【解析】解:①∵y=|sinx|≤1,
∴函數y=|sinx|在區(qū)間R上有界.
②∵y=|x+ |≥2
∴函數y=|x+ |在區(qū)間{x|x≠0}上無界;
③∵y=|tanx|≥0
∴函數y=|tanx|在區(qū)間{x|x≠ +kπ,k∈Z}上無界;
④∵ ;
令t=ex , t>0
則原式y(tǒng)= =1﹣ ∈(﹣1,1)
即值域為(﹣1,1)
∴存在M=1,對x∈R,使得|f(x)|≤M恒成立,
∴④是有界的.
⑤∵y=x3+ax2+bx+1(﹣4≤x≤4),
∴y在區(qū)間[﹣4,4]上是連續(xù)的函數,故一定要最大值P和最小值Q,
設M=max{|P|,|Q|}
∴對x∈D,M∈R,使得|f(x)|≤M恒成立,
故⑤是有界的.
故本題答案為:①④⑤.
【考點精析】關于本題考查的函數的最值及其幾何意義,需要了解利用二次函數的性質(配方法)求函數的最大(。┲;利用圖象求函數的最大(。┲;利用函數單調性的判斷函數的最大(。┲挡拍艿贸稣_答案.
科目:高中數學 來源: 題型:
【題目】將函數f(x)=sin2x的圖象向右平移φ(0<φ< )個單位后得到函數g(x)的圖象.若對滿足|f(x1)﹣g(x2)|=2的x1、x2 , 有|x1﹣x2|min= ,則φ=( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=xm﹣ ,且f(3)= .
(1)求函數f(x)的解析式,并判斷函數f(x)的奇偶性.
(2)證明函數f(x)在(0,+∞)上的單調性.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】目前我國城市的空氣污染越來越嚴重,空氣質量指數一直居高不下,對人體的呼吸系統(tǒng)造成了嚴重的影響,現調查了某城市500名居民的工作場所和呼吸系統(tǒng)健康,得到列聯表如下:
室外工作 | 室內工作 | 合計 | |
有呼吸系統(tǒng)疾病 | 150 | ||
無呼吸系統(tǒng)疾病 | 100 | ||
合計 | 200 |
(Ⅰ)請把列聯表補充完整;
(Ⅱ)你是否有95%的把握認為感染呼吸系統(tǒng)疾病與工作場所有關;
(Ⅲ)現采用分層抽樣從室內工作的居民中抽取一個容量為6的樣本,將該樣本看成一個總體,從中隨機抽取2人,求2人都有呼吸系統(tǒng)疾病的概率.
參考公式與臨界表:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】微信紅包是一款可以實現收發(fā)紅包、查收記錄和提現的手機應用.某網絡運營商對甲、乙兩個品牌各5種型號的手機在相同環(huán)境下搶到的紅包個數進行統(tǒng)計,得到如下數據:
手機品牌 型號 | I | II | III | IV | V |
甲品牌(個) | 4 | 3 | 8 | 6 | 12 |
乙品牌(乙) | 5 | 7 | 9 | 4 | 3 |
手機品牌 紅包個數 | 優(yōu) | 非優(yōu) | 合計 |
甲品牌(個) | |||
乙品牌(個) | |||
合計 |
(1)如果搶到紅包個數超過5個的手機型號為“優(yōu)”,否則為“非優(yōu)”,請完成上述2×2列聯表,據此判斷是否有85%的把握認為搶到的紅包個數與手機品牌有關?
(2)如果不考慮其他因素,要從甲品牌的5種型號中選出3種型號的手機進行大規(guī)模宣傳銷售.
①求在型號I被選中的條件下,型號II也被選中的概率;
②以表示選中的手機型號中搶到的紅包超過5個的型號種數,求隨機變量的分布列及數學期望.
下面臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式: ,其中.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com