【題目】已知?jiǎng)訄A過點(diǎn)且與直線相切.

1)求圓心的軌跡的方程;

2)過的直線與交于,兩點(diǎn),分別過的垂線,垂足為,線段的中點(diǎn)為.

①求證:

②記四邊形,的面積分別為,,若,求.

【答案】12)①證明見解析;②

【解析】

1)根據(jù)拋物線的定義得到點(diǎn)的軌跡是以為焦點(diǎn),為準(zhǔn)線的拋物線,進(jìn)而求得方程;

2)①設(shè),,則,得到,設(shè)直線的方程為,與聯(lián)立,分,兩種情況,結(jié)合直線垂直的條件證得結(jié)果;

②根據(jù)三角形的面積比,得到坐標(biāo)比,結(jié)合①,從而得到,得到結(jié)果.

1)∵動圓過點(diǎn)且與直線相切,

∴點(diǎn)的距離等于的距離,

∴點(diǎn)的軌跡是以為焦點(diǎn),為準(zhǔn)線的拋物線,其方程為.

2)①證法一:設(shè),,則,

為線段的中點(diǎn),∴

依題意可設(shè)直線的方程為,

,

,,,

,

當(dāng)時(shí),,關(guān)于軸對稱,點(diǎn)恰為軸的交點(diǎn),滿足

當(dāng)時(shí),,∴,∴,

綜上,.

證法二:連接,,設(shè)直線軸的交點(diǎn)為,

軸,,∴,

同理,,

,

,∴,

,即.

②法一:由,

同理,,

,異號,故

,,

.

法二:由,

同理,

,

由對稱性,不妨設(shè)點(diǎn)軸上方,直線的傾斜角為,

由定義易得

,同理,

,即,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a,bc為正實(shí)數(shù),且滿足a+b+c1.證明:

1|a|+|b+c1|

2)(a3+b3+c3)(≥3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,點(diǎn)軸上,點(diǎn)軸上,且,,當(dāng)點(diǎn)軸上運(yùn)動時(shí),動點(diǎn)的軌跡為曲線.過軸上一點(diǎn)的直線交曲線兩點(diǎn).

1)求曲線的軌跡方程;

2)證明:存在唯一的一點(diǎn),使得為常數(shù),并確定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy上取兩個(gè)定點(diǎn)A1,0),A2,0),再取兩個(gè)動點(diǎn)N10,m),N20,n),且mn2.

1)求直線A1N1A2N2交點(diǎn)M的軌跡C的方程;

2)過R30)的直線與軌跡C交于P,Q,過PPNx軸且與軌跡C交于另一點(diǎn)N,F為軌跡C的右焦點(diǎn),若λ1),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)籠子里關(guān)著只貓,其中有只白貓,只黑貓.把籠門打開一個(gè)小口,使得每次只能鉆出只貓.貓爭先恐后地往外鉆.如果只貓都鉆出了籠子,以表示只白貓被只黑貓所隔成的段數(shù).例如,在出籠順序?yàn)椤啊酢觥酢酢酢酢觥酢酢觥敝,則

1)求三只黑貓挨在一起出籠的概率;

2)求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左頂點(diǎn)為A,O為坐標(biāo)原點(diǎn),,C的離心率為

(Ⅰ)求橢圓C的方程;

(Ⅱ)已知不經(jīng)過點(diǎn)A的直線交橢圓CMN兩點(diǎn),線段MN的中點(diǎn)為B,若,求證:直線l過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過去五年,我國的扶貧工作進(jìn)入了“精準(zhǔn)扶貧”階段.目前“精準(zhǔn)扶貧”覆蓋了全部貧困人口,東部幫西部,全國一盤棋的扶貧格局逐漸形成.2020年底全國830個(gè)貧困縣都將脫貧摘帽,最后4335萬貧困人口將全部脫貧,這將超過全球其他國家過去30年脫貧人口總和.2020年是我國打贏脫貧攻堅(jiān)戰(zhàn)收官之年,越是到關(guān)鍵時(shí)刻,更應(yīng)該強(qiáng)調(diào)“精準(zhǔn)”.為落實(shí)“精準(zhǔn)扶貧”政策,某扶貧小組,為一“對點(diǎn)幫扶”農(nóng)戶引種了一種新的經(jīng)濟(jì)農(nóng)作物,并指導(dǎo)該農(nóng)戶于2020年初開始種植.已知該經(jīng)濟(jì)農(nóng)作物每年每畝的種植成本為1000元,根據(jù)前期各方面調(diào)查發(fā)現(xiàn),該經(jīng)濟(jì)農(nóng)作物的市場價(jià)格和畝產(chǎn)量均具有隨機(jī)性,且兩者互不影響,其具體情況如下表:

該經(jīng)濟(jì)農(nóng)作物畝產(chǎn)量(kg)

該經(jīng)濟(jì)農(nóng)作物市場價(jià)格(/kg)

概率

概率

1)設(shè)2020年該農(nóng)戶種植該經(jīng)濟(jì)農(nóng)作物一畝的純收入為X元,求X的分布列;

2)若該農(nóng)戶從2020年開始,連續(xù)三年種植該經(jīng)濟(jì)農(nóng)作物,假設(shè)三年內(nèi)各方面條件基本不變,求這三年中該農(nóng)戶種植該經(jīng)濟(jì)農(nóng)作物一畝至少有兩年的純收入不少于16000元的概率;

32020年全國脫貧標(biāo)準(zhǔn)約為人均純收入4000.假設(shè)該農(nóng)戶是一個(gè)四口之家,且該農(nóng)戶在2020年的家庭所有支出與其他收入正好相抵,能否憑這一畝經(jīng)濟(jì)農(nóng)作物的純收入,預(yù)測該農(nóng)戶在2020年底可以脫貧?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐,底面為正方形,且底面,的平面與側(cè)面的交線為,且滿足表示的面積.

1)證明: 平面;

(2)當(dāng)時(shí),求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱長為2的正方體中,分別是棱的中點(diǎn),是底面內(nèi)一動點(diǎn),若直線與平面不存在公共點(diǎn),以下說法正確的個(gè)數(shù)是(

①三棱錐的體積為定值;

的面積的最小值為;

平面;

④經(jīng)過三點(diǎn)的截面把正方體分成體積相等的兩部分.

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案