16.函數(shù) y=f(x)的反函數(shù)為y=log2x,則 f(-1)=$\frac{1}{2}$.

分析 由題意,令log2x=-1,求出x,即可得出結(jié)論.

解答 解:由題意,令log2x=-1,
∴x=$\frac{1}{2}$,
∴f(-1)=$\frac{1}{2}$.
故答案為:$\frac{1}{2}$.

點(diǎn)評(píng) 本題考查反函數(shù),考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在平面直角坐標(biāo)系xOy中,已知中心在原點(diǎn),焦點(diǎn)在x軸上的雙曲線C的離心率為$\sqrt{2}$,且雙曲線C與斜率為2的直線l有一個(gè)公共點(diǎn)P(-2,0).
(1)求雙曲線C的方程及它的漸近線方程;
(2)求以直線l與坐標(biāo)軸的交點(diǎn)為焦點(diǎn)的拋物線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.某幾何體的三視圖如圖所示(均由邊長(zhǎng)為$\sqrt{2}$的正方形及其對(duì)角線組成),則該幾何體的表面積為( 。
A.8$\sqrt{3}$B.4$\sqrt{3}$C.8$\sqrt{2}$D.4$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}={1^{\;}}$(a>b>0)的長(zhǎng)軸長(zhǎng)為2$\sqrt{3}$,右焦點(diǎn)為F(c,0),且a2,b2,c2成等差數(shù)列.
(1)求橢圓C的方程;
(2)過點(diǎn)F分別作直線l1,l2,直線l1與橢圓C交于點(diǎn)M,N,直線l2與橢圓C交于點(diǎn)P,Q,且l1⊥l2,求四邊形MPNQ面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若函數(shù)f(x)=x3-3x在(a,6-a2)上有最大值,則實(shí)數(shù)a的取值范圍是( 。
A.(-$\sqrt{7}$,-1)B.(-$\sqrt{7}$,-1]C.(-$\sqrt{7}$,-2)D.(-$\sqrt{7}$,-2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.直線l:$|\begin{array}{l}{1}&{2}\\{y}&{x}\end{array}|$=3的一個(gè)單位法向量$\overrightarrow{n}$=(-$\frac{\sqrt{5}}{5}$,$\frac{2\sqrt{5}}{5}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知集合P={x|x=k+$\frac{1}{2}$,k∈z},Q={x|x=$\frac{k}{2}$,k∈z},記原命題:“x∈P,則x∈Q”.那么,在原命題及其逆命題、否命題、逆否命題中,真命題的個(gè)數(shù)是( 。
A.0B.1C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.解不等式|x-1|+|2x+2|>5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.若數(shù)列bn=$\frac{n-2}{{2}^{n}}$,如果對(duì)任意的n∈N*,都有$\frac{7}{8}$+bn≤t2恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案