等比數(shù)列滿足,,數(shù)列滿足
(1)求的通項(xiàng)公式;(5分)
(2)數(shù)列滿足,為數(shù)列的前項(xiàng)和.求;(5分)
(3)是否存在正整數(shù),使得成等比數(shù)列?若存在,求出所有 的值;若不存在,請說明理由.(6分)
(1) ;(2)=
(3)當(dāng)且僅當(dāng),時(shí),成等比數(shù)列。
解析試題分析:(1)解:,所以公比 2分
計(jì)算出 3分
4分
5分
(2) 6分
于是 8分
= 10分
(3)假設(shè)否存在正整數(shù),使得成等比數(shù)列,則
, 12分
可得,
由分子為正,解得,
由,得,此時(shí),
當(dāng)且僅當(dāng),時(shí),成等比數(shù)列。 16分
說明:只有結(jié)論,,時(shí),成等比數(shù)列。若學(xué)生沒有說明理由,則只能得 13分
考點(diǎn):本題主要考查等比數(shù)列的概念、通項(xiàng)公式,裂項(xiàng)相消法求和,不等式解法。
點(diǎn)評(píng):綜合題,本題綜合考查等比數(shù)列知識(shí)、數(shù)列的求和、不等式解法,對考查考生靈活運(yùn)用數(shù)學(xué)知識(shí)的能力起到了很好的作用。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列為等差數(shù)列,,數(shù)列滿足,且.(1)求通項(xiàng)公式;(2)設(shè)數(shù)列的前項(xiàng)和為,試比較與的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在數(shù)列中,為常數(shù),,且成公比不等于1的等比數(shù)列.
(Ⅰ)求的值;
(Ⅱ)設(shè),求數(shù)列的前項(xiàng)和。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知各項(xiàng)均為正數(shù)的數(shù)列前項(xiàng)和為,首項(xiàng)為,且等差數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)若,設(shè),求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
數(shù)列{an}的前n項(xiàng)和記為Sn,已知a1=1,an+1=Sn(n=1,2,3…).
求證:數(shù)列{}是等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知數(shù)列是等比數(shù)列,,且是的等差中項(xiàng).
(Ⅰ) 求數(shù)列的通項(xiàng)公式;
(Ⅱ)若,求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)設(shè)等比數(shù)列的公比為,前n項(xiàng)和。
(Ⅰ)求的取值范圍;
(Ⅱ)設(shè),記的前n項(xiàng)和為,試比較與的大小。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(附加題,10分)已知函數(shù),數(shù)列滿足,且.
(1)試探究數(shù)列是否是等比數(shù)列?(5分)
(2)試證明.(5分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
已知數(shù)列{an}的前n項(xiàng)和為Sn,對任意的n∈N*有Sn=an-,且1<Sk<12,則k的值為( )
A.2 | B.2或4 | C.3或4 | D.6 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com