分析 利用同角三角函數(shù)基本關(guān)系式求解正弦函數(shù)以及余弦函數(shù),正切函數(shù)的值,化簡所求表達(dá)式求解即可.
解答 解:∵$x∈(-\frac{π}{2},0)$,$cos(\frac{π}{2}+x)=\frac{4}{5}$,∴$sinx=-\frac{4}{5},cosx=\frac{3}{5},tanx=-\frac{4}{3}$,
∴$\frac{{sin2x-2{{sin}^2}x}}{1+tanx}=\frac{{2sinxcosx-2{{sin}^2}x}}{{1+\frac{sinx}{cosx}}}=\frac{2sinxcosx(cosx-sinx)}{cosx+sinx}=\frac{168}{25}$.
點評 本題考查三角函數(shù)的化簡求值,同角三角函數(shù)基本關(guān)系式的應(yīng)用,考查計算能力.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{3}$ | B. | 2 | C. | -$\frac{2}{3}$ | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 設(shè)α、β為兩個不同平面,若直線l在平面α內(nèi),則“α⊥β”是“l(fā)⊥β”的必要不充分條件 | |
B. | 設(shè)隨機(jī)變量ξ服從正態(tài)分布N(0,1),若P(ξ>1)=p,則P(-1<ξ<0)=$\frac{1}{2}$-p | |
C. | 要得到函數(shù)f(x)=cos(2x+$\frac{π}{3}}$)的圖象,只需將函數(shù)g(x)=sin(2x+$\frac{π}{3}}$)的圖象向左平移$\frac{π}{4}$個單位長度 | |
D. | ?x∈(0,$\frac{π}{2}$),x<sinx |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若向量$\overrightarrow{a}$∥$\overrightarrow$,則存在唯一的實數(shù)λ使得$\overrightarrow a$=λ$\overrightarrow b$ | |
B. | 命題“若x2=1,則x=1”的否命題為“若x2=1,則x≠1” | |
C. | 命題“?x0∈R,使得x02+x0+1<0”的否定是:“?x∈R,均有x2+x+1>0” | |
D. | “a≠5且b≠-5”是“a+b≠0”的不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{28}{3}$ | B. | $\frac{26}{3}$ | C. | 28 | D. | 26 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com