A. | 設(shè)α、β為兩個不同平面,若直線l在平面α內(nèi),則“α⊥β”是“l(fā)⊥β”的必要不充分條件 | |
B. | 設(shè)隨機(jī)變量ξ服從正態(tài)分布N(0,1),若P(ξ>1)=p,則P(-1<ξ<0)=$\frac{1}{2}$-p | |
C. | 要得到函數(shù)f(x)=cos(2x+$\frac{π}{3}}$)的圖象,只需將函數(shù)g(x)=sin(2x+$\frac{π}{3}}$)的圖象向左平移$\frac{π}{4}$個單位長度 | |
D. | ?x∈(0,$\frac{π}{2}$),x<sinx |
分析 A.根據(jù)面面垂直和線面垂直的關(guān)系進(jìn)行判斷.
B.根據(jù)正態(tài)分布的性質(zhì)進(jìn)行求解.
C.根據(jù)三角函數(shù)的關(guān)系進(jìn)行判斷.
D.構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性進(jìn)行判斷.
解答 解:A.$\left.\begin{array}{l}l?α\\ l⊥β\end{array}\right\}⇒α⊥β$,反之不成立,故A為真命題.
B∵ξ服從正態(tài)分布N(0,1),∴p(ζ<-1)=P(ξ>1)=p,
p(-1≤ζ≤1)=1-2p,從而P(-1<ξ<0)=$\frac{1}{2}-p$.故B命題為真命題.
C.函數(shù)g(x)=sin(2x+$\frac{π}{3}}$)的圖象向左平移$\frac{π}{4}$個單位長度得,$g(x+\frac{π}{4})=sin[2(x+\frac{π}{4})+\frac{π}{3}]=sin(2x+\frac{π}{3}+\frac{π}{2})=cos(2x+\frac{π}{3})$,故命題C為真命題;
D.設(shè)f(x)=x-sinx,則f′(x)=1-cosx>0,
∴f(x)單調(diào)遞增,f(x)>f(0)=0,即:x>sinx.故命題D為假命題.
故選:D
點(diǎn)評 本題主要考查命題的真假判斷,涉及知識點(diǎn)較多,綜合性較強(qiáng),但難度不大.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3+2$\sqrt{3}$ | B. | 3-2$\sqrt{3}$ | C. | 3+$\sqrt{3}$ | D. | 3-$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 6 | C. | $2\sqrt{14}$ | D. | $4\sqrt{7}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com