19.判斷下列集合之間的關(guān)系
(1)A={-1,1},B={(-1,-1),(-1,1),(1,-1),(1,1)};
(2)A={x|x是等邊三角形},B={x|x是等腰三角形};
(3)A={x|-1<x<4},B={x|x-5<0};
(4)A={x|x=2n,n∈Z},B={y|y=k+2,k∈Z}.

分析 先判斷集合A,B元素的屬性是否相同,不同兩集合便沒關(guān)系,相同時(shí),再看集合A的元素和B的元素的關(guān)系,根據(jù)子集、真子集的概念判斷二者關(guān)系即可.

解答 解:(1)集合A的元素是數(shù),集合B的元素是點(diǎn),兩集合沒關(guān)系;
(2)等邊三角形也是等腰三角形,而等腰三角形不一定是等邊三角形;
∴B?A;
(3)B={x|x<5},A={x|-1<x<4};
顯然A的元素都是B的元素,而B的元素不一定是A的元素;
∴B?A;
(4)k∈Z,∴k+2∈Z;
∴B=Z,A表示偶數(shù)集;
∴B?A.

點(diǎn)評(píng) 考查列舉法和描述法表示集合的概念及表示形式,點(diǎn)集的表示形式,等邊三角形和等腰三角形的關(guān)系,清楚k取遍整數(shù)Z時(shí),k+2也取遍Z.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若點(diǎn)P(x,y)是圓x2+y2=4上任意一點(diǎn),則xy的最小值是-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.公比為2的等比數(shù)列{an}的各項(xiàng)都是正數(shù),且a3a11=16,則log3a10=log332.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知函數(shù)f(x)=$\frac{{x}^{2}+a}{{e}^{x}}$(x∈R)在區(qū)間[$\frac{1}{e}$,e]上是增函數(shù),實(shí)數(shù)a的取值范圍是(-∞,2e-e2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知長方體ABCD-A′B′C′D′,AA′=1,AB=$\sqrt{3}$.BC=2,求異面直線A′B與DC所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知f($\sqrt{x}$+2)=x+4$\sqrt{x}$,求f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,點(diǎn)D、E分別用AB,AC的中點(diǎn).
(1)求AC與BC1所成角;
(2)求異面直線AC1與B1C所成角的余弦值;
(3)求C1E與B1D所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.(1)已知f(x)為二次函數(shù),且f(0)=2,f(x+1)-f(x)=x-1,求f(x);
(2)已知3f(x)+2f(-x)=x+3,求f(x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=-x3+x2,g(x)=alnx(a≠0,a∈R).
(1)求f(x)的極值;
(2)若對(duì)任意x∈[1,+∞),使得f(x)+g(x)≥-x3+(a+2)x恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案