分析 (1)由直三棱柱ABC-A1B1C1中,可得CC1⊥AC.利用勾股定理的逆定理可得∠ACB=$\frac{π}{2}$,再利用線面垂直的判定與性質(zhì)定理即可得出.
(2)建立空間直角坐標(biāo)系,利用向量夾角公式、數(shù)量積運(yùn)算性質(zhì)即可得出.
(3)建立空間直角坐標(biāo)系,利用向量夾角公式、數(shù)量積運(yùn)算性質(zhì)即可得出.
解答 解:(1)由直三棱柱ABC-A1B1C1中,CC1⊥平面ABC,AC?平面ABC,
∴CC1⊥AC.
在△ABC中,AC2+BC2=32+42=25=AB2,
∴∠ACB=$\frac{π}{2}$,即AC⊥BC,又CC1∩BC=C,
∴AC⊥平面BCC1B1,BC1?平面BCC1B1,
∴AC⊥BC1,∴AC與BC1所成角為$\frac{π}{2}$.
(2)如圖所示,建立空間直角坐標(biāo)系.
C(0,0,0),A(3,0,0),C1(0,0,4),B1(0,4,4),
$\overrightarrow{A{C}_{1}}$=(-3,0,4),$\overrightarrow{C{B}_{1}}$=(0,4,4).
cos$<\overrightarrow{A{C}_{1}},\overrightarrow{C{B}_{1}}>$=$\frac{\overrightarrow{A{C}_{1}}•\overrightarrow{C{B}_{1}}}{|\overrightarrow{A{C}_{1}}||\overrightarrow{C{B}_{1}}|}$=$\frac{16}{\sqrt{25}×\sqrt{32}}$=$\frac{2\sqrt{2}}{5}$.
∴異面直線AC1與B1C所成角的余弦值為$\frac{2\sqrt{2}}{5}$.
(3)B(0,4,0),D($\frac{3}{2}$,2,0),E($\frac{3}{2}$,0,0),
$\overrightarrow{{C}_{1}E}$=($\frac{3}{2}$,0,-4),$\overrightarrow{{B}_{1}D}$=($\frac{3}{2}$,-2,-4),
∴cos$<\overrightarrow{{C}_{1}E},\overrightarrow{{B}_{1}D}>$=$\frac{\overrightarrow{{C}_{1}E}•\overrightarrow{{B}_{1}D}}{|\overrightarrow{{C}_{1}E}||\overrightarrow{{B}_{1}D}|}$=$\frac{\frac{9}{4}+16}{\sqrt{\frac{9}{4}+16}\sqrt{\frac{9}{4}+4+16}}$=$\frac{\sqrt{6497}}{89}$.
∴C1E與B1D所成角的余弦值為$\frac{\sqrt{6497}}{89}$.
點(diǎn)評 本題考查了異面直線所成的角、勾股定理的逆定理、空間位置關(guān)系、向量夾角公式、數(shù)量積運(yùn)算性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com