一家公司計(jì)劃生產(chǎn)某種小型產(chǎn)品的月固定成本為1萬(wàn)元,每生產(chǎn)1萬(wàn)件需要再投入2萬(wàn)元,設(shè)該公司一個(gè)月內(nèi)生產(chǎn)該小型產(chǎn)品x萬(wàn)件并全部銷售完,每萬(wàn)件的銷售收入為4-x萬(wàn)元,且每萬(wàn)件國(guó)家給予補(bǔ)助2e-
2elnx
x
-
1
x
萬(wàn)元.(e為自然對(duì)數(shù)的底數(shù),e是一個(gè)常數(shù))
(Ⅰ)寫出月利潤(rùn)f(x)(萬(wàn)元)關(guān)于月產(chǎn)量x(萬(wàn)件)的函數(shù)解析式
(Ⅱ)當(dāng)月產(chǎn)量在[1,2e]萬(wàn)件時(shí),求該公司在生產(chǎn)這種小型產(chǎn)品中所獲得的月利潤(rùn)最大值(萬(wàn)元)及此時(shí)的月生成量值(萬(wàn)件).(注:月利潤(rùn)=月銷售收入+月國(guó)家補(bǔ)助-月總成本)
考點(diǎn):導(dǎo)數(shù)在最大值、最小值問(wèn)題中的應(yīng)用
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:(Ⅰ)由月利潤(rùn)=月銷售收入+月國(guó)家補(bǔ)助-月總成本,即可列出函數(shù)關(guān)系式;
(2)利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,進(jìn)而求出函數(shù)的最大值.
解答: 解:(Ⅰ)由于:月利潤(rùn)=月銷售收入+月國(guó)家補(bǔ)助-月總成本,可得
f(x)=x(4-x+2e-
2elnx
x
-
1
x
-2)-1
=-x2+2(e+1)x-2elnx-2(x>0)

(Ⅱ)f(x)=-x2+2(e+1)x-2elnx-2的定義域?yàn)閇1,2e],
f′(x)=-2x+2(e+1)-
2e
x
=-
2(x-1)(x-e)
x
(x>0)

列表如下:
x(1,e)e(e,2e]
f'(x)+    0-
f(x)極大值f(e)  減
由上表得:f(x)=-x2+2(e+1)x-2elnx-2在定義域[1,2e]上的最大值為f(e).
且f(e)=e2-2.即:月生產(chǎn)量在[1,2e]萬(wàn)件時(shí),該公司在生產(chǎn)這種小型產(chǎn)品中所獲得的月利潤(rùn)最大值為f(e)=e2-2,此時(shí)的月生產(chǎn)量值為e(萬(wàn)件).
點(diǎn)評(píng):本題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、求函數(shù)的最值等知識(shí),考查學(xué)生利用導(dǎo)數(shù)解決實(shí)際問(wèn)題的能力及運(yùn)算求解能力,屬于難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知全集U=R,集合A={y|y=lg(x2+10),x∈R),集合B={x||x-2|<1},則(∁UB)∩A=( 。
A、{x|0≤x<1或x>3}
B、{x|x=1或x≥3}
C、{x|x>3}
D、{x|1≤x≤3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,直三棱柱ABC-A1B1C1的底面三角形ABC中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分別是A1B1、A1A的中點(diǎn).
(1)求
BN
的長(zhǎng);
(2)求cos<
BA1
,
CB1
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知y-2與x成正比,且當(dāng)x=1時(shí),y=-6
(1)求y與x之間的函數(shù)關(guān)系式          
(2)若點(diǎn)(a,2)在這個(gè)函數(shù)圖象上,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=loga(x+1)-loga(1-x),a>0且a≠1.
(1)求f(x)的定義域;
(2)判斷f(x)的奇偶性并予以證明;
(3)若a>1時(shí),求使f(x)>0的x的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
2
ax2
-2ax+lnx(a≠0).
(1)討論f(x)的單調(diào)性
(2)若?x0∈[1+
2
2
,2]
,使不等式f(x0)+ln(a+1)>b(a2-1)-(a+1)+2ln2對(duì)任意1<a<2恒成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正實(shí)數(shù)x,y滿足lnx+lny=0,且x>2y,若k(x-2y)≤x2+4y2恒成立,則k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若不等式|x+1|+|x-3|≥a+
4
a
對(duì)任意的實(shí)數(shù)x恒成立,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=4x2-mx-8在[5,20]具有單調(diào)性,則實(shí)數(shù)的取值范圍為( 。
A、(-∞,-160]∪[160,+∞)
B、(-∞,40]∪[160,+∞)
C、(-∞,-160]∪[40,+∞)
D、[40,160]

查看答案和解析>>

同步練習(xí)冊(cè)答案