17.將函數(shù)y=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的圖象向左平移$\frac{π}{12}$個單位長度后,所得曲線的一部分如圖所示,則ω,φ的值分別為( 。
A.1,$\frac{π}{6}$B.1,$-\frac{π}{6}$C.2,$\frac{π}{3}$D.2,$-\frac{π}{3}$

分析 利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律求得所得曲線的解析式,再由周期求出ω,由五點法作圖求出φ的值.

解答 解:將函數(shù)y=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的圖象向左平移$\frac{π}{12}$個單位長度后,
可得y=sin(ωx+$\frac{ωπ}{12}$+φ)的圖象.
再根據(jù)所得曲線的一部分圖象,可得$\frac{1}{2}•\frac{2π}{ω}$=$\frac{7π}{12}$-$\frac{π}{12}$,∴ω=2.
再根據(jù)五點法作圖可得2•$\frac{π}{12}$+φ=π,∴φ=$\frac{π}{3}$,則ω,φ的值分別為2;$\frac{π}{3}$,
故選:C.

點評 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由周期求出ω,由五點法作圖求出φ的值,屬于基礎題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

7.直線方程為(3a+2)x+y+8=0,若直線不過第二象限,則a的取值范圍是$(-∞,-\frac{2}{3}]$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),離心率為$\frac{{\sqrt{3}}}{2}$,P、Q為其上兩動點,A為左頂點,且A到上頂點距離$\sqrt{5}$.
(1)求C方程;
(2)若PQ過原點,PA、QA與y軸交于M、N,問$\overrightarrow{AM}•\overrightarrow{AN}$是否為定值;
(3)若PQ過右焦點,問其斜率為多少時,|PQ|等于短軸長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.下列表達式中,表示函數(shù)的是(  )
A.y=$\sqrt{-{x^2}-1}$B.y=$\left\{\begin{array}{l}{x^2},x≥0\\ 1,x≤0\end{array}\right.$
C.y=$\left\{\begin{array}{l}{x,x≥0}\\{0,-1<x<0}\end{array}\right.$D.y2=x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.在△ABC中,B=45°,c=1.5,b=2,那么sinC=$\frac{3\sqrt{2}}{8}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.分配4名煤氣工去3個不同的居民家里檢查煤氣管道,要求4名煤氣工都分配出去,并每名煤氣工只去一個居民家,且每個居民家都要有人去檢查,那么分配的方案共有( 。
A.24種B.18種C.72種D.36種

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知x>1,y>2,且xy=2x+y+6,則x+2y的最小值是(  )
A.7B.9C.11D.13

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知集合A={x|3≤x<10},B={x|2x-8≥0},則∁R(A∩B)={x|x<4或x≥10}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.為得到函數(shù)y=-sin2x的圖象,可將函數(shù)y=sin(2x-$\frac{π}{3}$)的圖象( 。
A.向左平移$\frac{π}{3}$個單位B.向左平移$\frac{π}{6}$個單位
C.向右平移$\frac{π}{3}$個單位D.向右平移$\frac{2π}{3}$個單位

查看答案和解析>>

同步練習冊答案