【題目】在平面直角坐標(biāo)系中,已知橢圓過(guò)點(diǎn),橢圓的離心率為.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)如圖,設(shè)直線與圓相切與點(diǎn),與橢圓相切于點(diǎn),當(dāng)為何值時(shí),線段長(zhǎng)度最大?并求出最大值.

【答案】1;(2時(shí),最大值為1.

【解析】

(1)利用基本量的關(guān)系列式求解即可.

(2) 設(shè)直線的方程為,根據(jù)直線與圓相切可得,再聯(lián)立直線與橢圓的方程,利用相切則所得的二次方程判別式為0可得,再聯(lián)立可得.再根據(jù)點(diǎn)的坐標(biāo)結(jié)合距離公式以及,在根據(jù)基本不等式求解最大值即可.

解:(1)由題,,

,解得.

故橢圓方程為.

2)連接OA,OB,如圖所示:

設(shè)直線的方程為,

因?yàn)橹本與圓相切于,

所以,即①,

因?yàn)?/span>與橢圓相切于點(diǎn),

,

有兩個(gè)相等的實(shí)數(shù)解,

,

,②

由①、②可得,

設(shè),由求根公式得,

,

,

∴在直角三角形中,

,

因?yàn)?/span>,當(dāng)且僅當(dāng)時(shí)取等號(hào),

所以,

即當(dāng)時(shí),取得最大值,最大值為1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的不規(guī)則幾何體中,已知四邊形是正方形,四邊形是平行四邊形,平面平面.

1)證明:;

2)求直線與平面所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面多邊形中,是邊長(zhǎng)為2的正方形,為等腰梯形,的中點(diǎn),且,,現(xiàn)將梯形沿折疊,使平面平面

1)求證:平面

2)求直線與平面所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,分別為橢圓的左右焦點(diǎn),點(diǎn)為橢圓上的一動(dòng)點(diǎn),面積的最大值為2.

1)求橢圓的方程;

2)直線與橢圓的另一個(gè)交點(diǎn)為,點(diǎn),證明:直線與直線關(guān)于軸對(duì)稱(chēng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖平面PAC⊥平面ABC, ACBC,PE// BC,M,N分別是AE,AP的中點(diǎn),且△PAC是邊長(zhǎng)為2的等邊三角形,BC=3,PE =2.

1)求證:MN⊥平面PAC;

2)求平面PAE與平面ABC夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,,D為線段BC(端點(diǎn)除外)上一動(dòng)點(diǎn).現(xiàn)將沿線段AD折起至,使二面角的大小為120°,則在點(diǎn)D的移動(dòng)過(guò)程中,下列說(shuō)法錯(cuò)誤的是(

A.不存在點(diǎn),使得

B.點(diǎn)在平面上的投影軌跡是一段圓弧

C.與平面所成角的余弦值的取值范圍是

D.線段的最小值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知的內(nèi)角,,的對(duì)邊分別為,.設(shè)為線段上一點(diǎn),,有下列條件:

;②;③.

請(qǐng)從以上三個(gè)條件中任選兩個(gè),求的大小和的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為α為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為,且在極坐標(biāo)下點(diǎn)P.

1)求曲線C1的普通方程和曲線C2的直角坐標(biāo)方程;

2)若曲線C1與曲線C2交于A,B兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】新冠病毒是一種通過(guò)飛沫和接觸傳播的變異病毒,為篩查該病毒,有一種檢驗(yàn)方式是檢驗(yàn)血液樣本相關(guān)指標(biāo)是否為陽(yáng)性,對(duì)于份血液樣本,有以下兩種檢驗(yàn)方式:一是逐份檢驗(yàn),則需檢驗(yàn)次.二是混合檢驗(yàn),將其中份血液樣本分別取樣混合在一起,若檢驗(yàn)結(jié)果為陰性,那么這份血液全為陰性,因而檢驗(yàn)一次就夠了;如果檢驗(yàn)結(jié)果為陽(yáng)性,為了明確這份血液究竟哪些為陽(yáng)性,就需要對(duì)它們?cè)僦鸱輽z驗(yàn),此時(shí)份血液檢驗(yàn)的次數(shù)總共為次.某定點(diǎn)醫(yī)院現(xiàn)取得4份血液樣本,考慮以下三種檢驗(yàn)方案:方案一,逐個(gè)檢驗(yàn);方案二,平均分成兩組檢驗(yàn);方案三,四個(gè)樣本混在一起檢驗(yàn).假設(shè)在接受檢驗(yàn)的血液樣本中,每份樣本檢驗(yàn)結(jié)果是陽(yáng)性還是陰性都是相互獨(dú)立的,且每份樣本是陰性的概率為

(Ⅰ)求把2份血液樣本混合檢驗(yàn)結(jié)果為陽(yáng)性的概率;

(Ⅱ)若檢驗(yàn)次數(shù)的期望值越小,則方案越“優(yōu)”.方案一、二、三中哪個(gè)最“優(yōu)”?請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案