已知直線y=-x+1與橢圓
x2
a2
+
y2
b2
=1(a>b>0)相交于A、B兩點,若橢圓的離心率為
2
2
,焦距為2,則線段AB的長是( 。
A、
2
3
2
B、
4
3
2
C、
2
D、2
考點:直線與圓錐曲線的關(guān)系
專題:圓錐曲線的定義、性質(zhì)與方程
分析:求出橢圓的方程為
x2
2
+y2=1,聯(lián)立
x2
2
+y2=1
y=-x+1
得出A(0,1),B(
4
3
-
1
3
),即可得出兩點距離.
解答: 解:e=
3
2
,2c=2,c=1
∴a=
2
,c=1,
則b=
a2-c2
=1,
∴橢圓的方程為
x2
2
+y2=1,
聯(lián)立
x2
2
+y2=1
y=-x+1

化簡得:3x 2 -4x=0,x=0,或x=
4
3

代入直線得出y=1,或y=-
1
3

則A(0,1),B(
4
3
,-
1
3

∴|AB|=
4
2
3

故選:B
點評:本題考查了直線與橢圓的位置關(guān)系,聯(lián)立方程組求解出點的坐標(biāo),運用距離公式,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知
C
2
n
=10,則n=( 。
A、10B、6C、4D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正四面體A-BCD中,E為棱AD的中點,則CE與平面BCD的夾角的正弦值為( 。
A、
3
2
B、
2
3
C、
1
2
D、
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正方體ABCD-A1B1C1D1,求:
(1)異面直線AD1與A1B所成的角;
(2)求AD1與平面ABCD所成的角;
(3)求二面角D1-AB-C的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|2x+b|.
(Ⅰ)若不等式f(x)<3的解集是(-1,2),求實數(shù)b的值;
(Ⅱ)在(Ⅰ)的條件下,若f(x+3)+f(x+1)≥m對一切實數(shù)x恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ex+e-x
ex-e-x
,下列命題:
①函數(shù)f(x)的零點為1;           
②函數(shù)f(x)的圖象關(guān)于原點對稱;
③函數(shù)f(x)在其定義域內(nèi)是減函數(shù);  
④函數(shù)f(x)的值域為(-∞,-1)∪(1,+∞).
其中所有正確的命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD為是矩形,PA⊥底面ABCD,E為棱PD的中點,AP=2,AD=3,且三棱錐E-ACD的體積為1.
(Ⅰ)求證:PB∥平面EC;
(Ⅱ)求直線EC與平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD為直角梯形,AB⊥AD,AB∥CD,CD=AD=2AB=2AP.

(1)求證:平面PAD⊥平面PAD;
(2)在側(cè)棱PC上是否存在點E,使得BE∥平面PAD,若存在,確定點E位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:關(guān)于x的方程x2-x+a=0無實根;命題q:關(guān)于x的函數(shù)y=-x2-ax+1在[-1,+∞)上是減函數(shù).若?q為真命題,p∨q為真命題,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案