根據(jù)如圖所示的算法流程圖,輸出的結(jié)果T為
 

考點:程序框圖
專題:算法和程序框圖
分析:算法的功能是求滿足T=1×2×4×…×I>30的最小的正整數(shù)I+2的值,由此可得輸出的I值.
解答: 解:由程序框圖知:算法的功能是求滿足T=1×2×4×…×I>30的最小的正整數(shù)I+2的值,
∵T=1×2×4=8<30,T=1×2×4×6=48>30,
∴輸出的I=6+2=8.
故答案為:8.
點評:本題考查了當(dāng)型循環(huán)結(jié)構(gòu)的程序框圖,根據(jù)框圖的流程判斷算法的功能是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知任意角θ以x軸為始邊,若終邊經(jīng)過點P(x0,y0)且|OP|=r(r>0).定義:sicosθ=
y0-x0
r
,稱“sicosθ”為“正余弦函數(shù)”.對于正余弦函數(shù)y=sicosx,有同學(xué)得到以下結(jié)論:
①該函數(shù)的值域為[-
2
,
2
];
②該函數(shù)圖象關(guān)于原點對稱;
③該函數(shù)圖象關(guān)于直線x=
4
對稱;
④該函數(shù)的單調(diào)遞增區(qū)間為[2kπ-
π
4
,2kπ+
4
],(k∈z).
則這些結(jié)論中正確的序號為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某射擊手每射擊一次射中目標(biāo)的概率為0.8,若該射擊手5次射中目標(biāo)的次數(shù)為X,則P(X≥1)=
 
 ( 用數(shù)值表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
25
+
y2
9
=1,過橢圓右焦點F的直線l交橢圓于A,B兩點,交y軸于P點.設(shè)
PA
1
AF
PB
2
BF
,則λ12等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
x
x+1
的定義域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F是拋物線y2=4x的焦點,直線l與拋物線相交于A,B兩點,線段AB的中點M(
5
2
,3),則直線l的斜率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知PA是圓O的切線,切點為A,PA=2.AC是圓O的直徑,PC與圓O交于點B,BC=3,則圓O的半徑R=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點為F1,F(xiàn)2,過F1作直線l交C與A,B兩點,若△ABF2是等腰三角形,且∠AF2B=90°,則橢圓C的離心率為(  )
A、2-
2
B、1-
2
2
C、
2
-1
D、
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在區(qū)間(-1,1)內(nèi)不是增函數(shù)的是( 。
A、y=ex+x
B、y=sinx
C、y=x3-6x2+9x+2
D、y=x2+x+1

查看答案和解析>>

同步練習(xí)冊答案