13.將函數(shù)y=cos(x-$\frac{π}{3}$)的圖象上各點(diǎn)橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),再向左平移$\frac{π}{6}$個(gè)單位,所得函數(shù)圖象的一條對(duì)稱(chēng)軸是( 。
A.x=$\frac{π}{4}$B.x=$\frac{π}{6}$C.x=πD.x=$\frac{π}{2}$

分析 由函數(shù)圖象變換的知識(shí)可得函數(shù)解析式,由余弦函數(shù)的對(duì)稱(chēng)性結(jié)合選項(xiàng)可得.

解答 解:將函數(shù)y=cos(x-$\frac{π}{3}$)的圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),得到函數(shù)y=cos($\frac{1}{2}$x-$\frac{π}{3}$)的圖象,
再向左平移$\frac{π}{6}$個(gè)單位,得到y(tǒng)=cos[$\frac{1}{2}$(x+$\frac{π}{6}$)-$\frac{π}{3}$)],即y=cos($\frac{1}{2}$x-$\frac{π}{4}$)的圖象,
令$\frac{1}{2}$x-$\frac{π}{4}$=kπ可解得x=2kπ+$\frac{π}{2}$,
故函數(shù)的對(duì)稱(chēng)軸為x=2kπ+$\frac{π}{2}$,k∈Z,
結(jié)合選項(xiàng)可得函數(shù)圖象的一條對(duì)稱(chēng)軸是直線(xiàn)x=$\frac{π}{2}$.
故選:D.

點(diǎn)評(píng) 本題考查余弦函數(shù)的圖象和對(duì)稱(chēng)性以及圖象變換,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.若實(shí)數(shù)a滿(mǎn)足x+lgx=2,實(shí)數(shù)b滿(mǎn)足x+10x=2,函數(shù)f(x)=$\left\{\begin{array}{l}{2ln(x+2)-\frac{a+b}{2},x≤0}\\{{x}^{2}-2,x>0}\end{array}\right.$,則關(guān)于x的方程f(x)=x解的個(gè)數(shù)為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=|x-a|(a∈R).
(1)若a=1,解不等式f(x)>$\frac{1}{2}$(x+1);
(2)若不等式f(x)+|x-2|≤3有解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.在平面直角坐標(biāo)系xOy中,已知圓C1:(x-4)2+(y-8)2=1,圓C2:(x-6)2+(y+6)2=9.若圓心在x軸上的圓C同時(shí)平分圓C1和圓C2的圓周,則圓C的方程是x2+y2=81.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.設(shè)全集U={-2,-1,0,1,2,3},A={2,3},B={-1,0},則A∩(∁UB)=( 。
A.{0,2,3}B.{-2,1,2,3}C.{-1,0,2,3}D.{2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.設(shè)集合A={x∈Z|-6≤x≤6},B={x|2<2x≤16},C={x|x>a}
(1)求A∩B; 
(2)若集合M=A∩B,求M的子集個(gè)數(shù)并寫(xiě)出集合M的所有子集;   
(3)若B∩C=∅,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.在平面直角坐標(biāo)系xOy中,已知直線(xiàn)$\left\{\begin{array}{l}{x=-\frac{3}{2}+\frac{\sqrt{2}}{2}l}\\{y=\frac{\sqrt{2}}{2}l}\end{array}\right.$(l為參數(shù))與曲線(xiàn)$\left\{\begin{array}{l}{x=\frac{1}{8}{t}^{2}}\\{y=t}\end{array}\right.$(t為參數(shù))相交于A,B兩點(diǎn),求線(xiàn)段AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=loga(x+2)-loga(2-x),a>0且a≠1.
(Ⅰ)判斷f(x)的奇偶性,并予以證明
(Ⅱ)求關(guān)于x的不等式f(x)>0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.($\sqrt{x}$+3)($\sqrt{x}$-$\frac{2}{x}$)5的展開(kāi)式中的常數(shù)項(xiàng)為40.

查看答案和解析>>

同步練習(xí)冊(cè)答案