分析 直線l的普通方程為x+y=3,圓C的普通方程為(x-1)2+y2=1,表示以C(1,0)為圓心,半徑為1 的圓.利用點(diǎn)到直線距離公式求解即可.
解答 解:直線l的參數(shù)方程為$\left\{\begin{array}{l}x=1-\frac{{\sqrt{2}}}{2}t\\ y=2+\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t為參數(shù)),消去t得普通方程為x+y=3.
圓C的極坐標(biāo)方程為ρ=2cosθ,即ρ2=2ρcosθ,
化為普通方程為x2+y2=2x,即為(x-1)2+y2=1,
表示以C(1,0)為圓心,半徑為1 的圓.
則圓心C到直線l的距離d=$\frac{|1-3|}{\sqrt{{1}^{2}+{1}^{2}}}$=$\sqrt{2}$.
可得:圓C上的點(diǎn)到直線l距離的最小值為$\sqrt{2}$-1.
故答案為:$\sqrt{2}$-1.
點(diǎn)評(píng) 本題考查參數(shù)方程、極坐標(biāo)方程、普通方程的互化,以及應(yīng)用,數(shù)形結(jié)合的思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ρ=1 | B. | ρsinθ=1 | C. | ρcosθ=1 | D. | ρ=2sinθ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$$<\frac{f(2)}{f(4)}$$<\frac{1}{2}$ | B. | $\frac{1}{4}<\frac{f(2)}{f(4)}$$<\frac{1}{3}$ | C. | $\frac{1}{8}$$<\frac{f(2)}{f(4)}$$<\frac{1}{4}$ | D. | $\frac{1}{16}$$<\frac{f(2)}{f(4)}$$<\frac{1}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com