3.給出下列命題:
①復(fù)數(shù)z=$\frac{3-ai}{i}$在復(fù)平面內(nèi)對應(yīng)的點在第三象限是a≥0的充分不必要條件;
②設(shè)α,β為兩個不同的平面,直線l?α,則“l(fā)⊥β”是“α⊥β”成立的充要條件;
③$a={log_{\frac{1}{3}}}2$,b=log${\;}_{\frac{1}{2}}$3,$c={(\frac{1}{3})^{0.5}}$大小關(guān)系是a<b<c;
④已知定點A(1,1),拋物線y2=4x的焦點為F,點P為拋物線上任意一點,則|PA|+|PF|的最小值為2;以上命題正確的是①④(請把正確命題的序號都寫上)

分析 ①求出復(fù)數(shù)在第三象限的等價條件,結(jié)合充分條件和必要條件的定義進行判斷,
②根據(jù)線面垂直和面面垂直的關(guān)系進行判斷
③根據(jù)對數(shù)和指數(shù)冪的大小關(guān)系進行判斷
④根據(jù)拋物線的定義和性質(zhì)進行判斷.

解答 解:①復(fù)數(shù)z=$\frac{3-ai}{i}$=-a-3i,在復(fù)平面內(nèi)對應(yīng)的點在第三象限,則等價為-a<0,則a>0,
則a>0是a≥0的充分不必要條件;故①正確,
②因為直線l?α,且l⊥β,所以由判斷定理得α⊥β.
所以直線l?α,且l⊥β⇒α⊥β
若α⊥β,直線l?α則直線l⊥β,或直線l∥β,或直線l與平面β相交,或直線l在平面β內(nèi).
所以“l(fā)⊥β”是“α⊥β”成立的充分不必要條件;故②錯誤,
③$a={log_{\frac{1}{3}}}2$=-log32∈(-1,0),b=log${\;}_{\frac{1}{2}}$3=-log23<-1,$c={(\frac{1}{3})^{0.5}}$>0,
∴b<a<c;故③錯誤,
④因為點A在拋物線開口之內(nèi),所以過A向拋物線的準線x=-1作垂線AK,垂足為K,交拋物線于點P,連接PF,則P即為所求.由拋物線的定義可知PF=PK,AK=AP+PK=AP+PF=2,由三點共線知識可得此時PA+PF最小,故④正確,
故答案為:①④

點評 本題主要考查命題的真假判斷,涉及的知識點較多,綜合性較強,有一定的難度.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在銳角△ABC中,$\frac{{a}^{2}+^{2}-{c}^{2}}{\sqrt{3}ab}$=$\frac{cosC}{sin(B+C)}$.
(1)求角A;
(2)若a=2,且sinB+cos(C+2B-$\frac{5π}{6}$)取得最大值時,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=lnx-ax,(a∈R,x>0)
(1)若函數(shù)f(x)與x軸相切,求a的值;
(2)當(dāng)a>0時,求函數(shù)f(x)在[1,2]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,已知拋物線C1:y2=4x的焦點為F,橢圓C2的中心在原點,F(xiàn)為其右焦點,點M為曲線C1和C2在第一象限的交點,且|$\overrightarrow{MF}$|=$\frac{5}{2}$.
(1)求橢圓C2的標(biāo)準方程;
(2)設(shè)A,B為拋物線C1上的兩個動點,且使得線段AB的中點D在直線y=x上,P(3,2)為定點,求△PAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖所示,∠PAQ是村里一個小湖的一角,其中∠PAQ=60°.為了給村民營造豐富的休閑環(huán)境,村委會決定在直線湖岸AP與AQ上分別建觀光長廊AB與AC,其中AB是寬長廊,造價是800元/米;AC是窄長廊,造價是400元/米;兩段長廊的總造價預(yù)算為12萬元(恰好都用完);同時,在線段BC上靠近點B的三等分點D處建一個表演舞臺,并建水上通道AD(表演舞臺的大小忽略不計),水上通道的造價是600元/米.
(1)若規(guī)劃寬長廊AB與窄長廊AC的長度相等,則水上通道AD的總造價需多少萬元?
(2)如何設(shè)計才能使得水上通道AD的總造價最低?最低總造價是多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.函數(shù)$f(x)=Asin(2x+\frac{π}{3})\;(A>0)$的圖象為C,對于函數(shù)f(x)及其圖象C給出以下結(jié)論:
①圖象C關(guān)于直線x=$\frac{π}{12}$對稱;
②圖象C關(guān)于點$(\frac{2π}{3},0)$對稱;
③函數(shù)f(x)在$[-\frac{5}{12}π,\frac{π}{12}]$上是增函數(shù);
④圖象C向右平移$\frac{π}{3}$個單位長度,可以得到函數(shù)y=Asin2x的圖象.
其中正確結(jié)論的序號是①③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,圓C與x軸相切于點T(2,0),與y軸正半軸相交于兩點M,N(點M在點N的下方),且|MN|=3.
(Ⅰ)求圓C的方程;
(Ⅱ)過點M任作一條直線與橢圓$\frac{x^2}{8}+\frac{y^2}{4}=1$相交于兩點A、B,連接AN、BN,求證:∠ANM=∠BNM.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,三棱錐P-ABC中,PB⊥平面ABC,PB=BC=CA=4,∠BCA=90°,E為PC的中點.
(1)求證:BE⊥平面PAC;
(2)求二面角E-AB-C的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知斜率為1的直線l與圓心為O1(1,0)的圓相切于點P,且點P在y軸上.
(Ⅰ)求圓O1的方程;
(Ⅱ)若直線l′與直線l平行,且圓O1上恰有四個不同的點到直線l′的距離等于$\frac{\sqrt{2}}{2}$,求直線l′縱截距的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案