1.某同學用“五點法”畫函數(shù)f(x)=Asin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)在某一個周期內(nèi)的圖象時,列表并填入了部分數(shù)據(jù),如表:
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
x-$\frac{π}{6}$$\frac{π}{3}$$\frac{5π}{6}$
Asin(ωx+φ)030-30
(1)請將上表數(shù)據(jù)補充完整,并直接寫出函數(shù)f(x)的解析式;
(2)將y=f(x)圖象上所有點向右平行移動 $\frac{π}{3}$個單位長度,得到y(tǒng)=g(x)的圖象,求y=g(x)的圖象離原點最近的對稱中心.

分析 (1)由f(x)的最大值得出A=3,把第1,3列數(shù)據(jù)代入ωx+φ即可得出ω,φ,從而得出f(x)的解析式;
(2)根據(jù)函數(shù)平移規(guī)律得出g(x)的解析式,根據(jù)正弦函數(shù)的對稱中心坐標得出g(x)的對稱中心.

解答 解:(1)由表格可知f(x)的最大值為3,∴A=3,
解方程組$\left\{\begin{array}{l}{-\frac{π}{6}ω+φ=0}\\{\frac{π}{3}ω+φ=π}\end{array}\right.$可得ω=2,φ=$\frac{π}{3}$.
∴f(x)=3sin(2x+$\frac{π}{3}$).
數(shù)據(jù)補全如下表:

ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
x-$\frac{π}{6}$$\frac{π}{12}$$\frac{π}{3}$$\frac{7π}{12}$$\frac{5π}{6}$
Asin(ωx+φ)030-30
(2)g(x)=f(x-$\frac{π}{3}$)=3sin[2(x-$\frac{π}{3}$)+$\frac{π}{3}$]=3sin(2x-$\frac{π}{3}$).
令2x-$\frac{π}{3}$=kπ,解得x=$\frac{π}{6}$+$\frac{kπ}{2}$,k∈Z.
令k=0得x=$\frac{π}{6}$.
∴y=g(x)的圖象離原點最近的對稱中心為($\frac{π}{6}$,0).

點評 本題考查了三角函數(shù)解析式的確定,正弦函數(shù)的性質(zhì),屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

2.一根彈簧,掛4N的物體時,長20cm,在彈性限度內(nèi),所掛物體的重量每增加1N,彈簧就伸長1.5cm,則彈簧的長度l(cm)與所掛物體重量G(N)的關系方程為l=14+1.5G.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.函數(shù)y=$\sqrt{cos2x}$+$\sqrt{3-2\sqrt{3}tanx-3{{tan}^2}x}$的定義域為$[kπ-\frac{π}{4},kπ+\frac{π}{6}],k∈Z$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知過點(1,1)的直線l與圓C:x2+y2-4y+2=0相切,則圓C的半徑為$\sqrt{2}$,直線l的方程為x-y=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.正項數(shù)列{an}的前n項和為Sn,且2Sn=an2+an(n∈N*),設cn=(-1)n$\frac{{2{a_n}+1}}{{2{S_n}}}$,則數(shù)列{cn}的前2017項的和為-$\frac{2019}{2018}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知函數(shù)f(x)=Asin(ωx+φ)的部分圖象如圖,則f($\frac{7π}{4}$)=( 。
A.-$\sqrt{3}$B.-1C.$\sqrt{3}$D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.設cos(α+β)sinα-sin(α+β)cosα=$\frac{12}{13}$,且β是第四象限角,則tan$\frac{β}{2}$=( 。
A.±$\frac{2}{3}$B.±$\frac{3}{2}$C.-$\frac{3}{2}$D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.在平面內(nèi)有n(n∈N*)條直線,其中任何兩條不平行,任何三條不過同一點,若這n條直線把平面分成f(n)個平面區(qū)域,則f(3)=7;f(n)=$\frac{{{n^2}+n+2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.△ABC中,∠BAC=45°,AD⊥BC于D,BD=2,DC=3,則AC邊上中線BE的長等于$\frac{\sqrt{85}}{2}$.

查看答案和解析>>

同步練習冊答案