精英家教網 > 高中數學 > 題目詳情

【題目】已知函數.

(1)若函數在點處的切線方程為,求的值;

(2)若在區(qū)間上,函數的圖象恒在直線下方,求的取值范圍.

【答案】(1);(2).

【解析】試題分析:(1)利用函數在處切線的斜率為可求得.將切點坐標代入切線方程可求得.(2)構造函數,則問題轉化為在區(qū)間上恒成立.對求導后,對分成三類,討論函數的單調區(qū)間和最值,由此求得的取值范圍.

試題解析:(1)由題知:,

,即,

,

,

,

所以切點為,代入切線方程得:,

.

(2)令,則的定義域為,

在區(qū)間上函數的圖象恒在直線下方,

等價于在區(qū)間上恒成立,

,

,得,

①若,則,

∴在上有,在上有,

上遞減,在上遞增,

,

此時與在區(qū)間上恒成立相背,

不符合題意.

②若時,則,

∵在上有,∴在區(qū)間遞增,

,此時與在區(qū)間上恒成立相背,

不符合題意.

③若,則,

∵在區(qū)間上有,則在區(qū)間遞減,

恒成立,要使恒成立,

只需,∴

.

綜上,當時,函數的圖象恒在直線下方.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如右圖所示,設E、FE1、F1分別是長方體ABCDA1B1C1D1的棱AB、CDA1B1、C1D1的中點,則平面EFD1A1與平面BCF1E1的位置關系是 (  )

A. 平行 B. 相交 C. 異面 D. 不確定

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某公司試銷一種成本單價為500元的新產品,規(guī)定試銷時銷售單價不低于成本單價,又不高于800元.經試銷調查,發(fā)現銷售量y()與銷售單價x()之間的關系可近似看作一次函數ykxb(k≠0),函數圖象如圖所示.

(1)根據圖象,求一次函數ykxb(k≠0)的表達式;

(2)設公司獲得的毛利潤(毛利潤=銷售總價-成本總價)S元.試問銷售單價定為多少時,該公司可獲得最大毛利潤?最大毛利潤是多少?此時的銷售量是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】【2014天津,文19】已知函數

(1) 的單調區(qū)間和極值;

(2)若對于任意的,都存在,使得,求的取值范圍

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)若,恒有成立,求實數的取值范圍;

(2)若函數有兩個極值點,求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在四棱錐中,,都是邊長為2的等邊三角形,設在底面的射影為.

(1)求證:中點;

(2)證明:;

(3)求點到面的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知某中學高三文科班學生共有800人參加了數學與地理的水平測試,現從中隨機抽取100人的數學與地理的水平測試成績如下表:

成績分為優(yōu)秀、良好、及格三個等級;橫向,縱向分別表示地理成績與數學成績,例如:表中數學成績?yōu)榱己玫墓灿?/span>.

)若在該樣本中,數學成績優(yōu)秀率是30%,求的值;

)已知,求數學成績?yōu)閮?yōu)秀的人數比及格的人數少的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(2016·桂林高二檢測)如圖所示,在四邊形ABCD,AB=AD=CD=1,BD=,BDCD,將四邊形ABCD沿對角線BD折成四面體A′-BCD使平面A′BD⊥平面BCD,則下列結論正確的是________.

(1)A′C⊥BD.(2)∠BA′C=90°.

(3)CA′與平面A′BD所成的角為30°.

(4)四面體A′-BCD的體積為.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某漁場有一邊長為20m的正三角形湖面ABC(如圖所示),計劃筑一條筆直的堤壩DE將水面分成面積相等的兩部分,以便進行兩類水產品養(yǎng)殖試驗(DAB上,EAC上).

(1)為了節(jié)約開支,堤壩應盡可能短,請問該如何設計?堤壩最短為多少?

(2)將DE設計為景觀路線,堤壩應盡可能長,請問又該如何設計?

查看答案和解析>>

同步練習冊答案