已知圓C經(jīng)過坐標原點,且與直線x-y+2=0相切,切點為A(2,4).
(1)求圓C的方程;
(2)過動點P作圓C和圓D:(x+9)2+(y-1)2=50的切線PM、PN(切點分別為M、N),使得|PM|=|PN|,求動點P的軌跡方程.
【答案】分析:(1)依題意可求得直線AC的方程,可求得OA的垂直平分線的方程,二者聯(lián)立即可求得圓心坐標,從而可得圓C的方程;
(2)依題意,點P的軌跡就是CD垂直平分線.
解答:解:(1)設(shè)圓C的圓心為C,依題意得直線AC的斜率kAC=-1,
∴直線AC的方程為y-4=-(x-2),即x+y-6=0.
∵直線OA的斜率kOA==2,
∴線段OA的垂直平分線為y-2=-(x-1),即x+2y-5=0.
解方程組得圓心C(7,-1).
∴圓C的半徑r=|AC|==5,
圓C的方程為(x-7)2+(y+1)2=50.
(2)∵圓C與圓D兩圓半徑相等,|PM|=|PN|,所以|PC|=|PD|,
∴P在線段CD的中垂線上,
∵C(7,-1),D(-9,1),CD的中點坐標為(-1,0),kCD=8,
∴CD的中垂線方程為:8x-y+8=0.
∴P的軌跡方程為:8x-y+8=0.
點評:本題考查圓的標準方程,考查直線和圓的方程的應(yīng)用,考查分析與運算能力,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知圓C經(jīng)過坐標原點,且與直線x-y+2=0相切,切點為A(2,4).
(1)求圓C的方程;
(2)過動點P作圓C和圓D:(x+9)2+(y-1)2=50的切線PM、PN(切點分別為M、N),使得|PM|=|PN|,求動點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C經(jīng)過坐標原點,且與直線x-y+2=0相切,切點為A(2,4).
(1)求圓C的方程;
(2)若斜率為-1的直線l與圓C相交于不同的兩點M,N,求
AM
AN
的取值范圍..

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007廣州市水平測試)已知圓C經(jīng)過坐標原點,且與直線x-y+2=0相切,切點為A(2,4).
(1)求圓C的方程;
(2)若斜率為-1的直線l與圓C相交于不同的兩點M、N,求
AM
AN
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C經(jīng)過坐標原點O,A(6,0),B(0,8).
(Ⅰ)求圓C的方程;
(Ⅱ)過點P(-2,0)的直線l和圓C的相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年廣東省廣州市執(zhí)信中學高二(上)期中數(shù)學試卷(解析版) 題型:解答題

已知圓C經(jīng)過坐標原點,且與直線x-y+2=0相切,切點為A(2,4).
(1)求圓C的方程;
(2)若斜率為-1的直線l與圓C相交于不同的兩點M,N,求的取值范圍..

查看答案和解析>>

同步練習冊答案