【題目】在單位正方體 中,O 的中點,如圖建立空間直角坐標(biāo)系.

(1)求證 ∥平面 ;

(2)求異面直線OD夾角的余弦值;

【答案】(1)見解析(2)

【解析】試題分析:

(1) ,結(jié)合線面平行的判斷定理即可證得結(jié)論;

(2)利用空間直角坐標(biāo)系可得異面直線夾角的余弦值為 .

試題解析:

(1)解法一:連接A1D∥A1D.

A1D平面, 平面

所以∥平面.

解法二:設(shè)平面的一個法向量為,

,令,則

所以. .從而

所以∥平面.

解:(2)法一:由(1)知異面直線的夾角為或其補角.

O中點,故,

所以兩異面直線的夾角的余弦值為.

法二:設(shè)、分別為直線的方向向量,

則由cos< , >= .

所以兩異面直線的夾角的余弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)預(yù)計從2015年初開始的第月,商品的價格, ,價格單位:元),且第月該商品的銷售量(單位:萬件).

(1)商品在2015年的最低價格是多少?

(2)2015年的哪一個月的銷售收入最少,最少是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】高三年級3名男生和1名女生為了報某所大學(xué),事先進(jìn)行了多方詳細(xì)咨詢,并根據(jù)自己的高考成績情況,最終估計3名男生報此所大學(xué)的概率都是,這1名女生報此所大學(xué)的概率是且這4人報此所大學(xué)互不影響。

(Ⅰ)求上述4名學(xué)生中報這所大學(xué)的人數(shù)中男生和女生人數(shù)相等的概率;

(Ⅱ)在報考某所大學(xué)的上述4名學(xué)生中,記為報這所大學(xué)的男生和女生人數(shù)的和,試求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)擬在高一下學(xué)期開設(shè)游泳選修課,為了了解高一學(xué)生喜歡游泳是否與性別有關(guān),該學(xué)校對100名高一新生進(jìn)行了問卷調(diào)查,得到如下列聯(lián)表:

喜歡游泳

不喜歡游泳

合計

男生

10

女生

20

合計

已知在這100人中隨機抽取1人抽到喜歡游泳的學(xué)生的概率為

(1)請將上述列聯(lián)表補充完整:并判斷是否有99.9%的把握認(rèn)為喜歡游泳與性別有關(guān)?并說明你的理由;

(2)針對于問卷調(diào)查的100名學(xué)生,學(xué)校決定從喜歡游泳的人中按分層抽樣的方法隨機抽取6人成立游泳科普知識宣傳組,并在這6人中任選2人作為宣傳組的組長,設(shè)這兩人中男生人數(shù)為,求的分布列和數(shù)學(xué)期望.

下面的臨界值表僅供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=

(1)f(x)的定義域為 (∞,+∞), 求實數(shù)a的范圍;

(2)f(x)的值域為 [0, +∞), 求實數(shù)a的范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】小明和爸爸周末到濕地公園進(jìn)行鍛煉,兩人上午9:00從公園入口出發(fā),沿相同路線勻速運動,小明15分鐘后到達(dá)目的地,此時爸爸離出發(fā)地的路程為1200米,小明到達(dá)目的地后立即按原路勻速返回,與爸爸相遇后,和爸爸一起從原路返回出發(fā)地.小明、爸爸在鍛煉過程中離出發(fā)地的路程與小明出發(fā)的時間的函數(shù)關(guān)系如圖.

(1)圖中________ _______;

(2)求小明和爸爸相遇的時刻.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某村積極開展“美麗鄉(xiāng)村生態(tài)家園”建設(shè),現(xiàn)擬在邊長為1千米的正方形地塊ABCD上劃出一片三角形地塊CMN建設(shè)美麗鄉(xiāng)村生態(tài)公園,給村民休閑健身提供去處.點M,N分別在邊AB,AD上. (Ⅰ)當(dāng)點M,N分別是邊AB,AD的中點時,求∠MCN的余弦值;

(Ⅱ)由于村建規(guī)劃及保護(hù)生態(tài)環(huán)境的需要,要求△AMN的周長為2千米,請?zhí)骄俊螹CN是否為定值,若是,求出此定值,若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,圓,動圓與圓外切并與圓內(nèi)切,圓心的軌跡為曲線.

(1)求的方程;

(2)是與圓,圓都相切的一條直線,與曲線交于兩點,當(dāng)圓的半徑最長時,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的正方形中隨機投擲10 000個點,則落入陰影部分(曲線C為正態(tài)分布

N(-1,1)的部分密度曲線)的點的個數(shù)的估計值為

附:若X~N(μ,σ2),則P(μ-σ<X<μ+σ)=0.682 6,P(μ-2σ<X<μ+2σ)=0.954 4.

A. 1 193 B. 1 359 C. 2 718 D. 3 413

查看答案和解析>>

同步練習(xí)冊答案