【題目】已知函數(shù) .
(1)求不等式 的解集;
(2)若關于 的不等式 的解集為 ,求實數(shù) 的取值范圍.

【答案】
(1)解:∵不等式 ,即 ,

∴① ,或② ,或③ ,

解①得: ;解②得: ;解③得: .

即不等式的解集為 .


(2)解:∵ .

的最小值等于4.

∵關于 的不等式 的解集為 ,∴ ,解此不等式得:

故實數(shù) 的取值范圍是 .


【解析】對于(1),解含兩個絕對值的不等式,往往通過分區(qū)間討論去掉絕對值得到一般不等式求解。
對于(2)不等式解集為空集,往往轉化為恒成立或恒不成立來解決。一般會出現(xiàn)最值進行比較。
【考點精析】本題主要考查了絕對值不等式的解法的相關知識點,需要掌握含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關鍵是去掉絕對值的符號才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,底面是正方形,平面,的中點.

(1)求證:平面;

(2)證明:平面平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fn(x)= x3 (n+1)x2+x(n∈N*),數(shù)列{an}滿足an+1=f'n(an),a1=3.
(1)求a2 , a3 , a4;
(2)根據(jù)(1)猜想數(shù)列{an}的通項公式,并用數(shù)學歸納法證明;
(3)求證: + +…+

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的離心率為 ,其中左焦點為 .
(1)求橢圓 的方程;
(2)過 的直線 與橢圓 相交于 兩點,若 的面積為 ,求以 為圓心且與直線 相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,游客從某旅游景區(qū)的景點處下上至處有兩種路徑.一種是從沿直線步行到,另一種是先從沿索道乘纜車到,然后從沿直線步行到.現(xiàn)有甲、乙兩位游客從處下山,甲沿勻速步行,速度為.在甲出發(fā)后,乙從乘纜車到,在處停留后,再從勻速步行到,假設纜車勻速直線運動的速度為,山路長為1260,經(jīng)測量,

1)求索道的長;

2)問:乙出發(fā)多少后,乙在纜車上與甲的距離最短?

3)為使兩位游客在處互相等待的時間不超過,乙步行的速度應控制在什么范圍內?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩船駛向一個不能同時停泊兩艘船的碼頭,它們在一天二十四小時內到達該碼頭的時刻是等可能的.如果甲船停泊時間為1小時,乙船停泊時間為2小時,求它們中的任意一艘都不需要等待碼頭空出的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】雙曲線 =1(a>1,b>0)的焦點距為2c,直線l過點(a,0)和(0,b),且點(1,0)到直線l的距離與點(﹣1,0)到直線l的距離之和 .求雙曲線的離心率e的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直角梯形ABCP中,CP∥AB,CP⊥CB,AB=BC= CP=2,D是CP中點,將△PAD沿AD折起,使得PD⊥面ABCD;

(Ⅰ)求證:平面PAD⊥平面PCD;
(Ⅱ)若E是PC的中點.求三棱錐A﹣PEB的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解某社區(qū)居民購買水果和牛奶的年支出費用與購買食品的年支出費用的關系,隨機調查了該社區(qū)5戶家庭,得到如下統(tǒng)計數(shù)據(jù)表:

購買食品的年支出費用x(萬元)

2.09

2.15

2.50

2.84

2.92

購買水果和牛奶的年支出費用y(萬元)

1.25

1.30

1.50

1.70

1.75

根據(jù)上表可得回歸直線方程 ,其中 ,據(jù)此估計,該社區(qū)一戶購買食品的年支出費用為3.00萬元的家庭購買水果和牛奶的年支出費用約為(
A.1.79萬元
B.2.55萬元
C.1.91萬元
D.1.94萬元

查看答案和解析>>

同步練習冊答案