13.劉徽是我國魏晉時期著名的數(shù)學(xué)家,他編著的《海島算經(jīng)》中有一問題:“今有望海島,立兩表齊,高三丈,前后相去千步,令后表與前表相直.從前表卻行一百二十三步,人目著地取望島峰,與表末參合.從后表卻行百二十七步,人目著地取望島峰,亦與表末參合.問島高幾何?”意思是:為了測量海島高度,立了兩根表,高均為5步,前后相距1000步,令后表與前表在同一直線上,從前表退行123步,人恰觀測到島峰,從后表退行127步,也恰觀測到島峰,則島峰的高度為( 。ㄗⅲ3丈=5步,1里=300步)
A.4里55步B.3里125步C.7里125步D.6里55步

分析 作出示意圖,利用三角形相似列比例式解出.

解答 解:設(shè)海島高度為AB,前后表分別為CD,EF,
由題意可知CD=EF=5,DG=123,DF=1000,
FH=127,
由△ABG∽△CDG得$\frac{5}{AB}=\frac{123}{123+BD}$,
由△ABH∽△EFH得$\frac{5}{AB}=\frac{127}{1127+BD}$,
∴$\frac{123}{123+BD}=\frac{127}{1127+BD}$,解得BD=30750,
∴AB=1255.
∴AB=4里55步.
故選A.

點評 本題考查了解三角形的實際應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,在四棱錐P-ABCD中,底面ABCD是菱形,且AB=$\sqrt{2}$,∠ABC=60°,點A在平PBC上的射影為PB的中點O,PB⊥AC.
(1)求證:PC=PD;
(2)求平面BAP與平面PCD所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=|x+5|-|x-1|(x∈R).
( I)解關(guān)于x的不等式f(x)≤x;
( II)證明:記函數(shù)f(x)的最大值為k,若lga+lg(2b)=lg(a+4b+k),試求ab的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),給出定義:設(shè)f′(x)是函數(shù)y=f(x)的導(dǎo)數(shù),f″(x)是f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實數(shù)解x0,則稱點(x0,f(x0))為函數(shù)y=f(x)的“拐點”.某同學(xué)經(jīng)過探究發(fā)現(xiàn),任何一個三次函數(shù)都有“拐點”和對稱中心,且“拐點”就是對稱中心.
(Ⅰ)求函數(shù)f(x)=x3-3x2+3x的對稱中心.
(Ⅱ)對于(Ⅰ)中的函數(shù)f(x),計算f(-98)+f(-97)+…+f(-1)+f(0)+f(1)+…+f(99)+f(100).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若函數(shù)y=ksin(kx+φ)($k>0,|φ|<\frac{π}{2}$)與函數(shù)y=kx-k2+6的部分圖象如圖所示,則函數(shù)f(x)=sin(kx-φ)+cos(kx-φ)圖象的一條對稱軸的方程可以為( 。
A.$x=-\frac{π}{24}$B.$x=\frac{13π}{24}$C.$x=\frac{7π}{24}$D.$x=-\frac{13π}{24}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦點為F1、F2,在雙曲線上存在點P滿足3|$\overrightarrow{P{F_1}}+\overrightarrow{P{F_2}}|≤2|\overrightarrow{{F_1}{F_2}}$|,則雙曲線的漸近線的斜率$\frac{a}$的取值范圍是( 。
A.$0<\frac{a}≤\frac{3}{2}$B.$\frac{a}≥\frac{3}{2}$C.$0<\frac{a}≤\frac{{\sqrt{5}}}{2}$D.$\frac{a}≥\frac{{\sqrt{5}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,在四棱錐P-ABCD中,在底面ABCD中,AD∥BC,AD⊥CD,Q是AD的中點,M是棱PC的中點,PA=PD=2,BC=$\frac{1}{2}$AD=1,CD=$\sqrt{3}$,PB=$\sqrt{6}$.
(1)求證:平面PAD⊥底面ABCD
(2)試求三棱錐B-PQM的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.某四面體的三視圖如圖所示,其中側(cè)視圖與俯視圖都是腰長為2的等腰直角三角形,正視圖是邊長為2的正方形,則此四面體的體積為$\frac{4}{3}$,表面積為2+2$\sqrt{3}+4\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.將10個志愿者名額分配給4個學(xué)校,要求每校至少有一個名額,則不同的名額分配方法共有84種.(用數(shù)字作答)

查看答案和解析>>

同步練習(xí)冊答案