下列說法:
①函數(shù)y=圖象的對(duì)稱中心是(1,1);
②“x>2是x2-3x+2>0”的充分不必要條件;
③對(duì)任意兩實(shí)數(shù)m,n,定義定點(diǎn)“*”如下:m*n=,則函數(shù)f(x)=的值域?yàn)椋?∞,0];
④若函數(shù)f(x)=對(duì)任意的x1≠x2都有,則實(shí)數(shù)a的取值范圍是(-,1],
其中正確命題的序號(hào)為   
【答案】分析:本題考查的知識(shí)點(diǎn)是判斷命題的真假,綜合考查了函數(shù)的對(duì)稱性,單調(diào)性,和值域問題,對(duì)每一個(gè)命題判斷時(shí),正確理解題意,結(jié)合函數(shù)性質(zhì),就可以得到正確結(jié)論.
解答:解:y===1-,∵y= 的對(duì)稱中心為(0,0),∴y=1-的對(duì)稱中心為(-1,1),故①不正確.
x2-3x+2=-,當(dāng)x>2時(shí),,,∴x2-3x+2=->0,∴x>2 是x2-3x+2>0的充分條件,由x2-3x+2>0得x<1或x>2,故由x2-3x+2>0不一定推得x>2,∴是不必要的條件,故②正確.
f(x)=定義域?yàn)閧x|x>},由m*n=知f(x)=,解得f(x)∈(-∞,0],故③正確.
對(duì)任意的x1≠x2都有知f(x)為定義域上的減函數(shù),要使f(x)=在定義域內(nèi)為減函數(shù),則,解得,故④不正確.
故答案為②③.
點(diǎn)評(píng):分式函數(shù)的對(duì)稱中心一般可通過反比例的函數(shù)的對(duì)稱中心平移得到;命題④分段函數(shù)在定義域內(nèi)是減函數(shù)要注意保證x<1時(shí)的最小值要大于  x≥1時(shí)得最大值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列說法:
①函數(shù)y=log
1
2
(x2-2x-3)
的單調(diào)增區(qū)間是(-∞,1);
②若函數(shù)y=f(x)定義域?yàn)镽且滿足f(1-x)=f(x+1),則它的圖象關(guān)于y軸對(duì)稱;
③對(duì)于指數(shù)函數(shù)y=2x與冪函數(shù)y=x2,總存在x0,當(dāng)x>x0時(shí),有2x>x2成立;
④若關(guān)于x的方程|x|(x+2)=m(m∈R)恰有三個(gè)互不相等的實(shí)數(shù)根x1,x2,x3,則x1+x2+x3的取值范圍是(-2,
2
-3)

其中正確的說法是
③④
③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列說法:
①函數(shù)y=cosx在第三、四象限都是減函數(shù);
②函數(shù)y=tan(ωx+φ)的最小正周期為
π
ω

③函數(shù)y=sin(
2
3
x+
5
2
π)
是偶函數(shù);
④函數(shù)y=cos2x的圖象向左平移
π
8
個(gè)單位長度得到y=cos(2x+
π
4
)
的圖象.
其中正確說法的序號(hào)是
③④
③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列說法:①函數(shù)y=
1
x
是冪函數(shù);②若x+y≠8,則x≠2或y≠6;③命題:“矩形對(duì)角線相等”的否定是“矩形對(duì)角線不相等”;④若函數(shù)f(x)的定義域是[-1,1],則函數(shù)y=f(x2)的定義域是[0,1].其中正確的有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于函數(shù)的零點(diǎn)與方程的根,下列說法:
①函數(shù)y=f(x)的零點(diǎn)就是方程f(x)=0的根;②函數(shù)y=x2-5x+6的零點(diǎn)分別為(2,0),(3,0),而方程y=x2-5x+6的根分別為x1=2,x2=3;③若函數(shù)y=f(x)在區(qū)間[a,b]上滿足f(a)•f(b)<0,則y=f(x)在區(qū)間(a,b)內(nèi)有零點(diǎn);④若方程f(x)=0有解,則對(duì)應(yīng)函數(shù)y=f(x)一定有零點(diǎn).
其中正確的有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列說法:①函數(shù)y=x
1
2
為偶函數(shù)的逆否命題為真命題;②“m≤3”是“函數(shù)y=log7-2mx為增函數(shù)”的充分不必要條件;③?x∈R,x2-3x+3>0的否定為假命題;④若a<0,則a+
1
a
≤-2
.其中正確的是(  )
A、①③B、②③C、①②D、③④

查看答案和解析>>

同步練習(xí)冊(cè)答案