1.一個(gè)四面體的頂點(diǎn)在空間直角坐標(biāo)系O-xyz中的坐標(biāo)分別是(2,0,2),(2,2,0),(0,2,2),(0,0,0),畫(huà)該四面體三視圖中的正視圖時(shí),以zOx平面為投影面,則得到正視圖可以為( 。
A.B.C.D.

分析 根據(jù)四面體的頂點(diǎn)坐標(biāo)在zOx平面上的投影組成正方形,即可得到正視圖是選項(xiàng)A中的圖形.

解答 解:如圖所示,
四面體的頂點(diǎn)坐標(biāo)分別是(2,0,2),(2,2,0),(0,2,2),(0,0,0),
該四面體的頂點(diǎn)在zOx平面上的投影是(2,0,2),(2,0,0),(0,0,2),(0,0,0),
這四點(diǎn)組成正方形,即得正視圖為選項(xiàng)A中的圖形.
故選:A.

點(diǎn)評(píng) 本題考查了空間直角坐標(biāo)系中的點(diǎn)的坐標(biāo)在坐標(biāo)平面內(nèi)的投影問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖,在平面直角坐標(biāo)系xoy中,拋物線y2=2px(p>0)的準(zhǔn)線l與x軸交于點(diǎn)M,過(guò)點(diǎn)M的直線與拋物線交于A,B兩點(diǎn),設(shè)A(x1,y1)到準(zhǔn)線l的距離d=2λp(λ>0)
(1)若y1=d=3,求拋物線的標(biāo)準(zhǔn)方程;
(2)若$\overrightarrow{AM}$+λ$\overrightarrow{AB}$=$\overrightarrow{0}$,求證:直線AB的斜率的平方為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知A(-2a,0),B(2a,0)(a>0),|$\overrightarrow{AP}$|=2a,D為線段BP的中點(diǎn).
(1)求點(diǎn)D的軌跡E的方程;
(2)拋物線C以坐標(biāo)原點(diǎn)為頂點(diǎn),以軌跡E與x軸正半軸的交點(diǎn)F為焦點(diǎn),過(guò)點(diǎn)B的直線與拋物線C交于M,N兩點(diǎn),試判斷坐標(biāo)原點(diǎn)與以MN為直徑的圓的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知集合A={x|x2-4x+3>0,x∈R}與集合B={x|${\frac{1}{x}$<1,x∈R},那么集合A∩B={x|x>3或x<0,x∈R}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知α、β∈(0,$\frac{π}{2}}$)且α<β,若sinα=$\frac{3}{5}$,cos(α-β)=$\frac{12}{13}$,求:
①cosβ的值;
②tan$\frac{β}{2}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知函數(shù)f(x)=x3-$\frac{3}{2}$ax2,且關(guān)于x的方程f(x)+a=0有三個(gè)不等的實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,-$\sqrt{2}$)∪(0,$\sqrt{2}$)B.(-$\sqrt{2}$,0)∪($\sqrt{2}$,+∞)C.(-$\sqrt{2}$,$\sqrt{2}$)D.(-∞,-$\sqrt{2}$)∪($\sqrt{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.命題p:?x>0,都有cosx≥-1,則(  )
A.¬p:?x>0,都有cosx<-1B.¬p:?x>0,使得cosx<-1
C.¬p:?x>0,使得cosx>-1D.¬p:?x>0,都有cosx≥-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.如圖,橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,A1,A2,B1,B2為橢圓頂點(diǎn),F(xiàn)2為右焦點(diǎn),延長(zhǎng)B1F2與A2B2交于點(diǎn)P,若∠B1PB2為鈍角,則該橢圓離心率的取值范圍是(  )
A.($\frac{\sqrt{5}-2}{2}$,1)B.(0,$\frac{\sqrt{5}-2}{2}$)C.(0,$\frac{\sqrt{5}-1}{2}$)D.($\frac{\sqrt{5}-1}{2}$,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1的漸近線方程是x±2y=0,則其離心率為( 。
A.$\sqrt{5}$B.$\frac{\sqrt{5}}{2}$C.$\sqrt{3}$D.5

查看答案和解析>>

同步練習(xí)冊(cè)答案