【題目】數列{an}中,a1=2, (n∈N*).
(1)證明數列 是等比數列,并求數列{an}的通項公式;
(2)設 ,若數列{bn}的前n項和是Tn , 求證: .
【答案】
(1)證明:數列{an}中,a1=2, (n∈N*),
= ,則數列 是首項為2,公比為 的等比數列;
則 =2( )n﹣1,
即為an=2n( )n﹣1
(2)解:證明: =
= ,
由2n=(1+1)n=1+n+ +…+ +1≥2n,
則4n≥4n2,
即有 ≤ = ( ﹣ ),
數列{bn}的前n項和是Tn= + + +…+
≤ (1﹣ + /span> ﹣ + ﹣ +…+ ﹣ )
= (1﹣ )< ,
則 .
【解析】(1)將原式兩邊除以n+1,結合等比數列的定義和通項公式,即可得證;(2)求得 = ,可得4n≥4n2 , 即有 ≤ = ( ﹣ ),運用數列的求和方法:裂項相消求和,結合不等式的性質,即可得證.
【考點精析】通過靈活運用等比數列的通項公式(及其變式)和數列的前n項和,掌握通項公式:;數列{an}的前n項和sn與通項an的關系即可以解答此題.
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,側面PAB⊥底面ABCD,△PAB為正三角形.AB⊥AD,CD⊥AD,點E、M為線段BC、AD的中點,F(xiàn),G分別為線段PA,AE上一點,且AB=AD=2,PF=2FA.
(1)確定點G的位置,使得FG∥平面PCD;
(2)試問:直線CD上是否存在一點Q,使得平面PAB與平面PMQ所成銳二面角的大小為30°,若存在,求DQ的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業(yè)為了解下屬某部門對本企業(yè)職工的服務情況,隨機訪問50名職工,根據這50名職工對該部門的評分,繪制頻率分布直方圖(如圖所示),其中樣本數據分組區(qū)間為
(1)求頻率分布直方圖中的值;
(2)估計該企業(yè)的職工對該部門評分不低于80的概率;
(3)從評分在的受訪職工中,隨機抽取2人,求此2人評分都在的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市為了宣傳環(huán)保知識,舉辦了一次“環(huán)保知識知多少”的問卷調查活動(一人答一份).現(xiàn)從回收的年齡在2060歲的問卷中隨機抽取了100份, 統(tǒng)計結果如下面的圖表所示.
年齡 分組 | 抽取份 數 | 答對全卷的人數 | 答對全卷的人數占本組的概率 |
[20,30) | 40 | 28 | 0.7 |
[30,40) | n | 27 | 0.9 |
[40,50) | 10 | 4 | b |
[50,60] | 20 | a | 0.1 |
(1)分別求出n, a, b, c的值;
(2)從年齡在[40,60]答對全卷的人中隨機抽取2人授予“環(huán)保之星”,求年齡在[50,60] 的人中至少有1人被授予“環(huán)保之星”的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,圓C與x軸相切于點T(2,0),與y軸正半軸相交于兩點M,N(點M在點N的下方),且|MN|=3.
(Ⅰ)求圓C的方程;
(Ⅱ)過點M任作一條直線與橢圓 相交于兩點A、B,連接AN、BN,求證:∠ANM=∠BNM.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】①在同一坐標系中,與的圖象關于軸對稱
②是奇函數
③與的圖象關于成中心對稱
④的最大值為,
以上四個判斷正確有____________________(寫上序號)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設, 分別為雙曲線的左、右焦點, 為雙曲線的左頂點,以, 為直徑的圓交雙曲線某條漸近線于, 兩點,且滿足,則該雙曲線的離心率為________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了讓學生了解環(huán)保知識,增強環(huán)保意識,某中學舉行了一次環(huán)保知識競賽,共有900名學生參加了這次競賽.為了了解本次競賽的成績情況,從中抽取了部分學生的成績(得分取正整數,滿分為100分)進行統(tǒng)計.請你根據下面尚未完成的頻率分布表和頻率分布直方圖(如圖),解答下列問題:
分組 | 頻數 | 頻率 |
[50,60) | 4 | 0.08 |
[60,70) | 8 | 0.16 |
[70,80) | 10 | 0.20 |
[80,90) | 16 | 0.32 |
[90,100] | ||
合計 |
(1)填充頻率分布表中的空格;
(2)不具體計算頻率/組距,補全頻率分布直方圖.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com