【題目】解答題
(1)求函數(shù)y=2|x﹣1|﹣|x﹣4|的值域;
(2)若不等式2|x﹣1|﹣|x﹣a|≥﹣1在x∈R上恒成立,求實數(shù)a的取值范圍.
【答案】
(1)解:∵y=2|x﹣1|﹣|x﹣4|= = ,
故函數(shù)的值域是[﹣3,+∞)
(2)解:f(x)=2|x﹣1|﹣|x﹣a|,
①a≥1時,f(x)= = ,
而2a﹣2>1﹣a,
此時f(x)的最小值是1﹣a,故只需1﹣a≥﹣1,
∴1≤a≤2;
②a<1時,f(x)= = ,
此時a<1時,﹣1+a<2﹣2a,f(x)的最小值是a﹣1,
只需a﹣1≥﹣1,0≤a<1,
綜上,a的范圍是[0,2]
【解析】(1)通過討論x的范圍求出函數(shù)f(x)的分段函數(shù)的形式,從而求出f(x)的值域即可;(2)通過討論a的范圍,求出函數(shù)f(x)的分段函數(shù)的形式,求出f(x)的最小值,得到關(guān)于a的不等式,解出即可.
【考點精析】根據(jù)題目的已知條件,利用絕對值不等式的解法的相關(guān)知識可以得到問題的答案,需要掌握含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對值的符號.
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,曲線C的方程為y=3+ .
(1)寫出曲線C的一個參數(shù)方程;
(2)在曲線C上取一點P,過點P作x軸,y軸的垂線,垂足分別為A,B,求矩形OAPB的周長的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,AB⊥平面BB1C1C,∠BCC1= ,AB=BB1=2,BC=1,D為CC1中點.
(1)求證:DB1⊥平面ABD;
(2)求二面角A﹣B1D﹣A1的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,已知拋物線,過點任作一直線與相交于兩點,過點作軸的平行線與直線相交于點為坐標原點).
(1)證明: 動點在定直線上;
(2)作的任意一條切線 (不含軸), 與直線相交于點與(1)中的定直線相交于點.
證明: 為定值, 并求此定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知{an}為等差數(shù)列,公差為d,且0<d<1,a5≠ (k∈Z),sin2a3+2sina5cosa5=sin2a7 , 函數(shù)f(x)=dsin(wx+4d)(w>0)滿足:在 上單調(diào)且存在 ,則w范圍是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線 : ( )的焦點為 ,點 在拋物線 上,且 ,直線 與拋物線 交于 , 兩點, 為坐標原點.
(1)求拋物線 的方程;
(2)求 的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】數(shù)列{an}中,a1=2, (n∈N*).
(1)證明數(shù)列 是等比數(shù)列,并求數(shù)列{an}的通項公式;
(2)設 ,若數(shù)列{bn}的前n項和是Tn , 求證: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某玩具生產(chǎn)公司每天計劃生產(chǎn)衛(wèi)兵、騎兵、傘兵這三種玩具共個,生產(chǎn)一個衛(wèi)兵需分鐘,生產(chǎn)一個騎兵需分鐘,生產(chǎn)一個傘兵需分鐘,已知總生產(chǎn)時間不超過小時,若生產(chǎn)一個衛(wèi)兵可獲利潤元,生產(chǎn)一個騎兵可獲利潤元,生產(chǎn)一個傘兵可獲利潤元.
(1)用每天生產(chǎn)的衛(wèi)兵個數(shù)與騎兵個數(shù)表示每天的利潤(元);
(2)怎么分配生產(chǎn)任務才能使每天的利潤最大,最大利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com