若復(fù)數(shù)z=(a2+2a-3)+(a-l)i為純虛數(shù)(i為虛數(shù)單位),則實數(shù)a的值為( 。
A、-3B、-3或1
C、3或-1D、1
考點:復(fù)數(shù)的基本概念
專題:數(shù)系的擴充和復(fù)數(shù)
分析:直接由復(fù)數(shù)z的實部等于0且虛部不等于0列式求解實數(shù)a的值.
解答: 解:∵復(fù)數(shù)z=(a2+2a-3)+(a-l)i為純虛數(shù),
a2+2a-3=0
a-1≠0
,解得a=-3.
∴實數(shù)a的值為-3.
故選:A.
點評:本題考查了復(fù)數(shù)的基本概念,考查了復(fù)數(shù)是純虛數(shù)的條件,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的左右焦點分別是F1,F(xiàn)2,過F1垂直于x軸的直線與E相交于A,B 兩點,且|AB|=3
2
,離心率為
2
2

(1)求橢圓E的方程;
(2)過焦點F2作與坐標(biāo)軸不垂直的直線l交橢圓E于C,D兩點,點M是點C關(guān)于x軸的對稱點,在x軸上是否存在一個定點N使得D,M,N三點共線?若存在,求出點N坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若某程序框圖如圖所示,則該程序運行后輸出的值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的周長為
2
+1,且sinA+sinB=
2
sinC.若△ABC的面積為
1
6
sinC,則角C的大小為( 。
A、30°B、60°
C、90°D、120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個正三棱柱的每一條棱長都是a,則經(jīng)過底面一邊和相對側(cè)棱的一個端點的截面(即圖中△ACD)的面積為(  )
A、
7
4
a2
B、
7
2
a2
C、
6
3
a2
D、
7
a2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,長方體ABCD-A1B1C1D1中,交于頂點A的三條棱長分別為AD=3,AA1=4,AB=5,則從A點沿表面到C1的最短距離為(  )
A、5
2
B、
74
C、4
5
D、3
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果是( 。
A、28B、29C、36D、37

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)l、m是兩條不同的直線,α、β是兩個不同的平面,則下列正確的是( 。
A、若l⊥α,l⊥β,則α∥β
B、若l∥α,α⊥β,則l⊥β
C、若l∥m,m∥α,則l∥α
D、若α⊥β,α∩β=l,l⊥m,則m⊥α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐S-ABCD的底面是正方形,側(cè)棱SA⊥底面ABCD,過A作AE垂直SB交SB于E點,作AH垂直SD交SD于H點,平面AEH交SC于K點,且AB=1,SA=2.
(1)設(shè)點P是SA上任一點,試求PB+PH的最小值;
(2)求證:E、H在以AK為直徑的圓上;
(3)求平面AEKH與平面ABCD所成的銳二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案