【題目】下列四種說法中正確的有______.(填序號)①數(shù)據(jù)223,3,46,7,3的眾數(shù)與中位數(shù)相等;②數(shù)據(jù)1,3,5,7,9的方差是數(shù)據(jù)2,610,1418的方差的一半;③一組數(shù)據(jù)的方差大小反映該組數(shù)據(jù)的波動性,若方差越大,則波動性越大,方差越小,則波動性越小.④頻率分布直方圖中各小長方形的面積等于相應(yīng)各組的頻數(shù).

【答案】①③

【解析】

由眾數(shù)和中位數(shù)概念可知①正確;由方差的性質(zhì)可知②錯誤,③正確;由頻率分布直方圖的特點可知④錯誤.

①中,數(shù)據(jù)的眾數(shù)為,中位數(shù)為,故①正確;

②中,第二組數(shù)據(jù)為第一組數(shù)據(jù)對應(yīng)數(shù)字的倍,則方差應(yīng)為第一組數(shù)據(jù)方差的倍,即第一組數(shù)據(jù)的方差為第二組數(shù)據(jù)方差的,故②錯誤;

③中,方差用來描述數(shù)據(jù)的穩(wěn)定性,方差越小數(shù)據(jù)越穩(wěn)定,③正確;

④中,頻率分布直方圖中各小長方形的面積對應(yīng)各組數(shù)據(jù)的頻率,而非頻數(shù),故④錯誤.

故答案為:①③

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中心在原點,對稱軸為坐標(biāo)軸的雙曲線與圓有公共點,且圓在點處的切線與雙曲線的一條漸近線平行,則該雙曲線的實軸長為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體中,平面平面.四邊形為正方形,四邊形為梯形,且,,,

(1)求證:;

(2)求直線與平面所成角的正弦值;

(3)線段上是否存在點,使得直線平面若存在,求的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點為橢圓上任意一點,直線與圓交于兩點,點為橢圓的左焦點.

(Ⅰ)求橢圓的離心率及左焦點的坐標(biāo);

(Ⅱ)求證:直線與橢圓相切;

(Ⅲ)判斷是否為定值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著“北京八分鐘”在韓國平昌冬奧會驚艷亮相,冬奧會正式進入了北京周期,全社會對冬奧會的熱情空前高漲.

(1)為迎接冬奧會,某社區(qū)積極推動冬奧會項目在社區(qū)青少年中的普及,并統(tǒng)計了近五年來本社區(qū)冬奧項目青少年愛好者的人數(shù)(單位:人)與時間(單位:年),列表如下:

依據(jù)表格給出的數(shù)據(jù),是否可用線性回歸模型擬合的關(guān)系,請計算相關(guān)系數(shù)并加以說明(計算結(jié)果精確到0.01).

(若,則線性相關(guān)程度很高,可用線性回歸模型擬合)

附:相關(guān)系數(shù)公式,參考數(shù)據(jù).

(2)某冰雪運動用品專營店為吸引廣大冰雪愛好者,特推出兩種促銷方案.

方案一:每滿600元可減100元;

方案二:金額超過600元可抽獎三次,每次中獎的概率同為 ,且每次抽獎互不影響,中獎1次打9折,中獎2次打8折,中獎3次打7折. v

兩位顧客都購買了1050元的產(chǎn)品,并且都選擇第二種優(yōu)惠方案,求至少有一名顧客比選擇方案一更優(yōu)惠的概率;

②如果你打算購買1000元的冰雪運動用品,請從實際付款金額的數(shù)學(xué)期望的角度分析應(yīng)該選擇哪種優(yōu)惠方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中正確命題的序號是(   。

①函數(shù)fx)在定義域R內(nèi)可導(dǎo),f1)=0”函數(shù)fx)在x1處取極值的充分不必要條件;

②函數(shù)fx)=x3ax[1,2]上單調(diào)遞增,則a4

③在一次射箭比賽中,甲、乙兩名射箭手各射箭一次.設(shè)命題p甲射中十環(huán),命題q乙射中十環(huán),則命題至少有一名射箭手沒有射中十環(huán)可表示為(¬p)∨(¬q);

④若橢圓左、右焦點分別為F1F2,垂直于x軸的直線交橢圓于AB兩點,當(dāng)直線過右焦點時,ABF1的周長取最大值

A.①③④B.②③④C.②③D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著“北京八分鐘”在韓國平昌冬奧會驚艷亮相,冬奧會正式進入了北京周期,全社會對冬奧會的熱情空前高漲.

(1)為迎接冬奧會,某社區(qū)積極推動冬奧會項目在社區(qū)青少年中的普及,并統(tǒng)計了近五年來本社區(qū)冬奧項目青少年愛好者的人數(shù)(單位:人)與時間(單位:年),列表如下:

依據(jù)表格給出的數(shù)據(jù),是否可用線性回歸模型擬合的關(guān)系,請計算相關(guān)系數(shù)并加以說明(計算結(jié)果精確到0.01).

(若,則線性相關(guān)程度很高,可用線性回歸模型擬合)

附:相關(guān)系數(shù)公式,參考數(shù)據(jù).

(2)某冰雪運動用品專營店為吸引廣大冰雪愛好者,特推出兩種促銷方案.

方案一:每滿600元可減100元;

方案二:金額超過600元可抽獎三次,每次中獎的概率同為 ,且每次抽獎互不影響,中獎1次打9折,中獎2次打8折,中獎3次打7折. v

兩位顧客都購買了1050元的產(chǎn)品,并且都選擇第二種優(yōu)惠方案,求至少有一名顧客比選擇方案一更優(yōu)惠的概率;

②如果你打算購買1000元的冰雪運動用品,請從實際付款金額的數(shù)學(xué)期望的角度分析應(yīng)該選擇哪種優(yōu)惠方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的偶函數(shù)f(x),且對任意實數(shù)x都有f(x+2)=f(x),當(dāng)x∈[0,1]時,f(x)=x2,若在區(qū)間[﹣3,3]內(nèi),函數(shù)g(x)=f(x)﹣kx﹣3k有6個零點,則實數(shù)k的取值范圍為__

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線過點且與直線垂直,直線軸交于點,點與點關(guān)于軸對稱,動點滿足.

(Ⅰ)求動點的軌跡的方程;

(Ⅱ)過點的直線與軌跡相交于兩點,設(shè)點,直線的斜率分別為,問是否為定值?若是,求出該定值;若不是,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案