6.已知$\overrightarrow a=(1,3),\overrightarrow b=(2,x)$,設(shè)$\overrightarrow a$與$\overrightarrow b$的夾角為θ,若θ為銳角,則x的取值范圍為{x|x>-$\frac{2}{3}$,且 x≠6}.

分析 由題意可得 $\overrightarrow{a}$與$\overrightarrow$不平行,且$\overrightarrow{a}•\overrightarrow$>0,由此求得x的取值范圍.

解答 解:由于$\overrightarrow a$與$\overrightarrow b$的夾角為θ,若θ為銳角,且$\overrightarrow a=(1,3),\overrightarrow b=(2,x)$,
∴$\overrightarrow{a}$與$\overrightarrow$不平行,且$\overrightarrow{a}•\overrightarrow$>0,即$\frac{2}{1}≠\frac{x}{3}$,且 2+3x>0,
化簡可得x>-$\frac{2}{3}$,且 x≠6,
故答案為:{x|x>-$\frac{2}{3}$,且 x≠6}.

點(diǎn)評 本題主要考查用兩個向量的數(shù)量積表示兩個向量的夾角,兩個向量的數(shù)量積的定義,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖所示,在所有棱長都為2a的直三棱柱ABC-A1B1C1中,D點(diǎn)為棱AB的中點(diǎn)
(1)求四棱錐C1-ADB1A1的體積;
(2)求證:AC1∥平面CDB1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知$\overrightarrow a=(2,4),\overrightarrow b=(x,-2),且\overrightarrow a∥\overrightarrow b$,則x=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列敘述不正確的是( 。
A.類比推理是由特殊到特殊的推理
B.歸納推理是由特殊到一般的推理
C.演繹推理是由一般到特殊的推理
D.合情推理和演繹推理所得的結(jié)論都是正確的

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若向量$\overrightarrow{a}$、$\overrightarrow$ 滿足|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow$|=1,$\overrightarrow{a}•\overrightarrow$=-1,則向量$\overrightarrow{a}$、$\overrightarrow$ 的夾角的大小為$\frac{3π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在△ABC中,角A,B,C的對邊分別為a,b,c,E,F(xiàn)分別是AC,AB的中點(diǎn),
(1)若∠C=60°,b=1,c=3,求△ABC的面積;   
(2)若3AB=2AC,$\frac{BE}{CF}$<t恒成立,求t的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知f(x)=$\left\{\begin{array}{l}\sqrt{1-{x^2}},x∈[-1,1]\\{x^2}-1,x∈(1,2]\end{array}$,則$\int_{-1}^2{f(x)dx=}$$\frac{π}{2}$+$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,直三棱柱ABC-A1B1C1中,AC=AA1=2AB,且BC1⊥A1C
(1)求證:A1C⊥平面ABC1
(2)若D是A1C1的中點(diǎn),在線段BB1上是否存在點(diǎn)E,使DE∥平面ABC1?若存在,指出點(diǎn)E的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)是定義在(0,+∞)內(nèi)的單調(diào)函數(shù),且對?x∈(0,+∞),f[f(x)-lnx]=e+1,給出下面四個命題:
①不等式f(x)>0恒成立
②函數(shù)f(x)存在唯一零點(diǎn),且x0∈(0,1)
③方程f(x)=x有兩個根
④方程f(x)-f′(x)=e+1(其中e為自然對數(shù)的底數(shù))有唯一解x0,且x0∈(1,2)
其中正確的命題個數(shù)為(  )
A.1個B.2個C.3個D.4個

查看答案和解析>>

同步練習(xí)冊答案