已知函數(shù)(其中,e是自然對(duì)數(shù)的底數(shù)).
(Ⅰ)若,試判斷函數(shù)在區(qū)間上的單調(diào)性;
(Ⅱ)若函數(shù)有兩個(gè)極值點(diǎn),),求k的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,試證明
(Ⅰ)在區(qū)間上是單調(diào)遞減函數(shù);(Ⅱ)k的取值范圍是;(Ⅲ)詳見解析.

試題分析:(Ⅰ)將代入求導(dǎo),根據(jù)其符號(hào)即可得其單調(diào)性;(Ⅱ)函數(shù)有兩個(gè)極值點(diǎn),,則,的兩個(gè)根,即方程有兩個(gè)根.接下來就研究函數(shù)圖象特征,結(jié)合圖象便可知取何值時(shí),方程有兩個(gè)根.

(Ⅲ)結(jié)合圖象可知,函數(shù)的兩個(gè)極值點(diǎn),滿足.
,這里面有兩個(gè)變量,那么能否換掉一個(gè)呢?
,得,利用這個(gè)關(guān)系式便可將換掉而只留
,這樣根據(jù)的范圍,便可得,從而使問題得證.
試題解析:(Ⅰ)若,則,
當(dāng)時(shí),,
故函數(shù)在區(qū)間上是單調(diào)遞減函數(shù). 4分
(Ⅱ)函數(shù)有兩個(gè)極值點(diǎn),,則,的兩個(gè)根,
即方程有兩個(gè)根,設(shè),則
當(dāng)時(shí),,函數(shù)單調(diào)遞增且;
當(dāng)時(shí),,函數(shù)單調(diào)遞增且;
當(dāng)時(shí),,函數(shù)單調(diào)遞減且
要使有兩個(gè)根,只需,
故實(shí)數(shù)k的取值范圍是. 9分
(Ⅲ)由(Ⅱ)的解法可知,函數(shù)的兩個(gè)極值點(diǎn),滿足, 10分
,得,
所以
由于,故,
所以. 14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某地政府為科技興市,欲在如圖所示的矩形ABCD的非農(nóng)業(yè)用地中規(guī)劃出一個(gè)高科技工業(yè)園區(qū)(如圖中陰影部分),形狀為直角梯形QPRE(線段EQ和RP為兩個(gè)底邊),已知其中AF是以A為頂點(diǎn)、AD為對(duì)稱軸的拋物線段.試求該高科技工業(yè)園區(qū)的最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)為自然對(duì)數(shù)的底數(shù)).
(1)求函數(shù)上的單調(diào)區(qū)間;
(2)設(shè)函數(shù),是否存在區(qū)間,使得當(dāng)時(shí)函數(shù)的值域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033045767572.png" style="vertical-align:middle;" />,若存在求出,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知P()為函數(shù)圖像上一點(diǎn),O為坐標(biāo)原點(diǎn),記直線OP的斜率。
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)設(shè),求函數(shù)的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(I)討論的單調(diào)性;
(Ⅱ)若在(1,+)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題13分) 已知函數(shù)為自然對(duì)數(shù)的底數(shù))。
(1)若,求函數(shù)的單調(diào)區(qū)間;
(2)是否存在實(shí)數(shù),使函數(shù)上是單調(diào)增函數(shù)?若存在,求出的值;若不存在,請(qǐng)說明理由。恒成立,則,又,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),其中
(Ⅰ) 當(dāng),求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)若時(shí),函數(shù)有極值,求函數(shù)圖象的對(duì)稱中心的坐標(biāo);
(Ⅲ)設(shè)函數(shù) (是自然對(duì)數(shù)的底數(shù)),是否存在a使上為減函數(shù),若存在,求實(shí)數(shù)a的范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

定義在R上的函數(shù)f(x)滿足(x+2)f’(x)<0,又a=f(log0.53),b=f(()0.3),c=f(ln3),則(     )
A.a(chǎn)<b<cB.b<c<aC.c<a<bD.c< b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

,且函數(shù)上存在反函數(shù),則(    )
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案