若
,且函數(shù)
在
,
上存在反函數(shù),則( )
試題分析:據(jù)題意得:
,所以
,
,
.
函數(shù)
在
,
上存在反函數(shù),所以
或
在
,
上恒成立.
顯然
在
上單調(diào)遞增,所以
或
,
所以
或
.選B
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
(其中
,e是自然對數(shù)的底數(shù)).
(Ⅰ)若
,試判斷函數(shù)
在區(qū)間
上的單調(diào)性;
(Ⅱ)若函數(shù)
有兩個(gè)極值點(diǎn)
,
(
),求k的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,試證明
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
,其中實(shí)數(shù)a為常數(shù).
(I)當(dāng)a=-l時(shí),確定
的單調(diào)區(qū)間:
(II)若f(x)在區(qū)間
(e為自然對數(shù)的底數(shù))上的最大值為-3,求a的值;
(Ⅲ)當(dāng)a=-1時(shí),證明
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
(
,
),
.
(Ⅰ)證明:當(dāng)
時(shí),對于任意不相等的兩個(gè)正實(shí)數(shù)
、
,均有
成立;
(Ⅱ)記
,
(ⅰ)若
在
上單調(diào)遞增,求實(shí)數(shù)
的取值范圍;
(ⅱ)證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
的導(dǎo)函數(shù)是
,
在
處取得極值,且
.
(Ⅰ)求
的極大值和極小值;
(Ⅱ)記
在閉區(qū)間
上的最大值為
,若對任意的
總有
成立,求
的取值范圍;
(Ⅲ)設(shè)
是曲線
上的任意一點(diǎn).當(dāng)
時(shí),求直線OM斜率的最小值,據(jù)此判斷
與
的大小關(guān)系,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
,
.
(1)若
,求證:當(dāng)
時(shí),
;
(2)若
在區(qū)間
上單調(diào)遞增,試求
的取值范圍;
(3)求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
(I)求
的單調(diào)區(qū)間;
(II)若存在
使
求實(shí)數(shù)a的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)
是函數(shù)
的一個(gè)極值點(diǎn).
(1)求
與
的關(guān)系式(用
表示
),并求
的單調(diào)遞增區(qū)間;
(2)設(shè)
,若存在
使得
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知函數(shù)
的圖像如圖所示,且
.則
的值是
.
查看答案和解析>>