1.設(shè)$z=\frac{2}{1-i}+{(1-i)^2}$,則$|\overline z|$=( 。
A.$\sqrt{3}$B.1C.2D.$\sqrt{2}$

分析 利用復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義、模的計(jì)算公式即可得出.

解答 解:∵$z=\frac{2(1+i)}{(1-i)(1+i)}+{(1-i)^2}=1+i-2i=1-i$,
∴$\overline{z}=1+i,\;\;|\bar z|=\sqrt{2}$,
故選:D.

點(diǎn)評(píng) 本題考查了模的計(jì)算公式、復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若x,y滿足$\left\{{\begin{array}{l}{x+y≥1}\\{mx-y≤0}\\{3x-2y+2≥0}\end{array}}\right.$且z=3x-y的最大值為2,則實(shí)數(shù)m的值為( 。
A.$\frac{1}{3}$B.$\frac{2}{3}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.甲船在點(diǎn)A處測(cè)得乙船在北偏東60°的B處,并以每小時(shí)10海里的速度向正北方向行使,若甲船沿北偏東30°角方向直線航行,并1小時(shí)后與乙船在C處相遇,則甲船的航速為10$\sqrt{3}$海里/小時(shí).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若圓的參數(shù)方程為x=-1+2cost,y=3+2sint(t為參數(shù)),直線的參數(shù)方程為x=2m-1,y=6m-1(m為參數(shù)),則直線與圓的位置關(guān)系是( 。
A.過圓心B.相交而不過圓心C.相切D.相離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知正項(xiàng)等比數(shù)列{an}滿足log2a1+log2a2+…+log2a2009=2009,則log2(a1+a2009)的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若實(shí)數(shù)x,y在條件$\left\{\begin{array}{l}x+y≤4\\ x≥1\\ y≥m\end{array}\right.$下,所表示的平面區(qū)域面積為2,則$\frac{x+y+2}{x+1}$的最小值為( 。
A.$\frac{1}{2}$B.$\frac{3}{2}$C.$\frac{2}{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.小麗今天晚自習(xí)準(zhǔn)備復(fù)習(xí)歷史、地理或政治中的一科,她用數(shù)學(xué)游戲的結(jié)果來決定選哪一科,游戲規(guī)則是:在平面直角坐標(biāo)系中,以原點(diǎn)O為起點(diǎn),再分別以P1(-1,0),P2(-1,1),P3(0,1),P4(1,1),P5(1,0)這5個(gè)點(diǎn)為終點(diǎn),得到5個(gè)向量,任取其中兩個(gè)向量,計(jì)算這兩個(gè)向量的數(shù)量積y,若y>0,就復(fù)習(xí)歷史,若y=0,就復(fù)習(xí)地理,若y<0,就復(fù)習(xí)政治.
(1)寫出y的所有可能取值;
(2)求小麗復(fù)習(xí)歷史的概率和復(fù)習(xí)地理的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)f(x)=ln|x+cosx|的圖象為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在△ABC中,∠CAB=45°,∠CBA=30°,CD⊥AB,DE⊥AC,DF⊥BC.

(1)證明:A,E,F(xiàn),B四點(diǎn)共圓;
(2)求$\frac{EF}{AB}$的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案