分析 (I)根據(jù)b2=q,列方程組計(jì)算q與S2,從而得出{an}的公差,從而得出{an},{bn}的通項(xiàng)公式;
(II)使用錯(cuò)位相減法求出Tn.
解答 解:(I)∵{bn}為等比數(shù)列,公比為q,b1=1,
∴b2=q,∴$\left\{\begin{array}{l}{q+{S}_{2}=4}\\{q=q{S}_{2}}\end{array}\right.$,解得q=3,S2=1.
∵a1=$\frac{1}{3}$,∴a2=$\frac{2}{3}$.∴{an}的公差為$\frac{1}{3}$.
∴an=$\frac{1}{3}+\frac{1}{3}(n-1)$=$\frac{n}{3}$,bn=3n-1.
(II)cn=$\frac{n}{3}•{3}^{n-1}$=n•3n-2.
∴Tn=1×3-1+2×30+3×31+4×32+…+n×3n-2,①
∴3Tn=1×30+2×31+3×32+4×33+…+(n-1)×3n-2+n×3n-1,②
①-②得:-2Tn=3-1+30+31+32+…+3n-2-n×3n-1=$\frac{\frac{1}{3}(1-{3}^{n})}{1-3}$-n×3n-1=($\frac{1}{2}-n$)3n-1-$\frac{1}{6}$.
∴Tn=$\frac{2n-1}{4}•{3}^{n-1}$+$\frac{1}{12}$.
點(diǎn)評(píng) 本題考查了等差數(shù)列,等比數(shù)列的通項(xiàng)公式,數(shù)列求和,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 自然數(shù)a,b,c中至少有兩個(gè)奇數(shù) | |
B. | 自然數(shù)a,b,c中至少有兩個(gè)偶數(shù)或都是奇數(shù) | |
C. | 自然數(shù)a,b,c都是偶數(shù) | |
D. | 自然數(shù)a,b,c都是奇數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 14 | C. | 28 | D. | 27 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com